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We study the problem of detecting changes in a location scale model. Our
novel detector is based on sequential estimates of two indicators derived from
the characteristic function (ch.f.), which allow to decouple the location from
the scale problem. The asymptotic theory treats general weighted integrals of
nonlinear functions of the real and imaginary parts of (sequential) estimates
of the characteristic function and covers (functional) central limit theorems
as well as the corresponding subsampling versions, where the latter allow for
resampling-based estimation of control limits. In this way, we provide a uni-
fying approach and provide a base for practical implementations of the pro-
cedures. Our results also reveal that the estimated indicators have different
convergence rates. This explains the decoupling and clustering effects observed
in practice and is also in contrast to the case of the sample mean and sam-
ple variance, which share the same convergence rate. Monte Carlo simulations
show that the effect is also present in finite samples and that the proposed
monitoring procedures are powerful, especially for small shifts. Our simulations
also show that subsampling with calibration leads to accurate estimation of
control limits even in small samples. Lastly, we illustrate our procedure by
applying it to the monitoring of intraday climate data.

Keywords: Change detection, climate data, control chart, functional data,
location-scale model, subsampling, time series.

1. INTRODUCTION

Let Yj ∼ Fj , j = 1, 2, . . . be a sequence of random variables. When the observations arrive
sequentially, thus forming a data stream, one is often interested in detecting changes of the
location and scale by applying monitoring procedures (control charts). The problem arises in
diverse areas of applications such as econometrics, finance, environmetrics, physics and engi-
neering, and we shall illustrate our findings by an application to monitoring of environmental
data. The approach proposed in this paper has the advantage that it is based on character-
istics of the underlying distribution and associated estimates, which decouple the location
and scale problem. At this point it is worth recalling that that many test classic statistics
and control charts are based on the statistic T = |Y − µ0|/S, where µ0 denotes the nominal
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(in-control or target) location parameter, while Y and S are the standard estimates of expec-
tation and dispersion, respectively. The statistic T serves as an estimator of the normalized
shift, |µ−µ0|/σ, where µ is the true mean and σ the scale parameter (usually the dispersion).
If we admit simultaneous changes in location and scale, it may happen that the indicator
statistic T remains unchanged, since location changes are partly masked by changes of the
scale. Further, the control limits of frequently used charts depend on nuisance parameters,
whereas the control statistic of our proposal to monitor σ is a pivot.

The empirical ch.f., the related characteristic process and its application to tests date back
to the seminal works of [23] and [12] and have been investigated for various statistical prob-
lems such as tests for symmetry, see [12] or [18] and the discussion given there, or tests for
dependence, see e.g. [11]. Change-point detection and tests based on empirical ch.f.s has been
studied recently by [19, 20, 21]. For a general and extensive monograph on ch.f.s we refer to
[48]; for treatments of the general methodology of detection procedures, sequential (on-line)
as well as non-sequential (off-line), and other recent results we refer to [6], [33], [8], [34], [32]
and [45, ch.9]. Further mathematical background and results on sequential estimation can be
found in [13] and [51], amongst others.

The method we shall introduce in the present paper uses a novel idea that relies on the fact
that in a location scale family with symmetric generic distribution function (d.f.) the ratio of
the real and imaginary part of the ch.f. depends solely on the location parameter, whereas its
absolute value is a function of the scale parameter; details will be given in Section 2. In this
way, we can nicely decouple the location and scale problems. The asymptotic theory devel-
oped in this paper shows that the proposed nonparametric detection statistics have different
convergence rates, which helps explaining the decoupling and clustering effect observed in
practice, see Section 2.2. This is in contrast to the case of the sample mean and variance.
Here the underlying parameters are coupled, since the variance depends on the mean and they
share the convergence rate 1/

√
n. From an applied viewpoint, our method has the advantage

that it is not necessary to collect rational subgroups at each time point or, alternatively,
group observations in subgroups of size l and apply a chart to these subgroups leading to a
substantially coarser time scale of the detector, as it is the case for classic methods such as
the R (range) or S charts or CUSUM schemes recently discussed in [16].

Monitoring procedures should meet well defined statistical criteria such as a nominal signif-
icance level or a bounded average run length (ARL) when the underlying series (process) is
in-control, i.e. if the null hypothesis of no change holds true. We propose to rely on the sub-
sampling approach of [30], see also [31], that provides consistent resampling approximations
under weak regularity assumptions. Here the procedure is recalculated from shorter subseries
to approximate its distribution. In this way, one can easily design the proposed monitoring
procedures.

To introduce the change-point model, let us tentatively assume that the observations are
independent. We shall later relax that assumption substantially and allow for a large class
of nonlinear time series of the form Yn = f(εn, εn−1, εn−2, . . . ) for an i.i.d. noise process {εn}
and a measurable function f . Such nonlinear models appear naturally when nonlinear filters
are applied to preprocess the data, which is a widely spread technique in imaging as well as
time series analysis.

We are interested in the following basic (at most one change-point point) detection problem
of sequential analysis. Suppose that random variables Y1, Y2, . . . with distribution functions
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(d.f.s) F1, F2, . . . arrive sequentially and assume the change-point model

F1 = · · · = Fq−1 6= Fq = · · · = FN

where N ∈ N denotes the maximum sample size. F1 denotes the d.f. of the measurements
when the process is in control and Fq stands for the out-of-control distribution. If F1 6= Fq
and 1 < q, there is a change in the distribution starting at observation q. The goal is to detect
the occurrence of the change-point during the monitoring period 1, . . . , N as early as possible
by applying a control chart defined by a stopping time. If the chart provides a signal, one
concludes that there was a change-point (structural break). An important special case of the
general change-point problem on which we shall focus is the location-scale problem

(1.1) F1 = F and Fq = F

(
· − µ
σ

)
for some fixed d.f. F with F (x) = 1− F (−x), x ∈ R.

The classic problem formulation in quality control assumes that F and therefore the cor-
responding characteristic function (ch.f.) is known to us. However, our results also cover the
case when the ch.f. is unknown and estimated from either a learning sample of in-control
observations right before monitoring starts, or when it is estimated sequentially using all
available observations except the most recent ones. The idea behind the latter approach is
that when there was no signal yet, one may use almost all of them to estimate unknown quan-
tities depending on the in-control distribution, since those measurements are likely distributed
according to F1.

We approach the problem as follows: When studying procedures based on (estimated) ch.f.s,
it is natural to associate to each observation Yj the random function

(1.2) eitYj = cos(tYj) + i sin(tYj), t ∈ R,

yielding a functional data set of continuous functions. Indeed, taking this standpoint and
using methods which can cope with functional data will be the key for general results which
reveal the analytic reasons why the proposed statistics for location and scale behave quite
differently. Indeed, we found that they have different convergence rates and follow different
types of asymptotic laws.

Behind our procedures are unbiased nonparametric estimates Ĉkl (t) of the function C(t) =
(E cos(tY1), E sin(tY1)))′, t ∈ T, defining the ch.f., which depend on the subsample Yl, . . . , Yk,
for integers l ≤ k. Given those estimates, we consider the class of control statistics given by

(1.3)

∫
T
ψ(Ĉkl (t))w(t) dt−

∫
T
ψ(C(t))w(t) dt, l ≤ k ≤ N,N ∈ N,

for a suitable smooth function ψ defined on ∩l≤k≤N,N≥1=(Ĉ lk) ∩ =(C) and a nonnegative
weighting function w(t) defined on some appropriately chosen domain T such that the above
integrals and

∫
w(t) dt exist. For sake of brevity of notation, here and in what follows we omit

the area of integration. Here =(f) denotes the image of some function f defined on T. For
the specific ψ-functions we shall use to handle the location scale detection problem, further
details will be discussed later.

The outline of the paper is as follows. In Section 2, we review some basic facts on charac-
teristic functions and introduce the decoupling indicators, which are sensitive with respect to



4 A. STELAND

location and scale changes, respectively, and unique up to smooth transformations. We also
introduce the proposed sequential estimates yielding our control statistics. Section 3 intro-
duces the nonlinear time series model to which our results basically apply, discusses how the
treatment of the proposed class of detectors can be traced back to well known characteris-
tic process and presents our contributions to its study. In Section 4, we present and discuss
our theoretical results on the monitoring procedures under the null hypothesis of no change.
We show that and explain why these procedures have qualitatively different limits. Section 5
discusses the subsampling approach in order to estimate the distribution of the procedure, in
particular of the stopping time defining the detector. Section 6 complements the theoretical
results by providing the asymptotic theory under local alternatives and identifies the right
order to obtain non-trivial limits. The performance of the proposed detectors is studied by
simulations in Section 7. We study to which extent the theoretical decoupling effect carries
over to statistical practice, compare our proposals with some competitors and investigate the
accuracy of the subsampling approximations. Lastly, we illustrate in Section 8 our procedures
by applying them to the monitoring of intraday SO2 measurements, motivated by the role of
SO2 as an air pollutant that has an climate effect, see [25].

2. INDICATORS FOR LOCATION AND SCALE SHIFTS AND RELATED CONTROL CHART

DETECTION PROCEDURES

This section provides more details on the basic change-point model of interest and discusses
the proposed indicators to measure changes in the location and scale of symmetric distribu-
tions, respectively. To the best of our knowledge, the location indicator has not yet been
studied in the literature. We show that both indicators are unique up to C1 transformations,
which provides a rigorous mathematical justification. We also demonstrate general their po-
tential for data analysis when estimating them nonparametrically, particularly their ability
to decouple changes in the mean and scale of measurements. Moving window (sequential)
versions of those nonparametric estimators shall form the base for the control statistics of our
detectors.

After those preliminaries, we describe in detail the construction of appropriate control
chart detection procedures for monitoring. They will be based on stopping times based on
nonparametric moving window estimates of the indicators.

2.1. Preliminaries and Decoupling Indicators for Location and Scale

Let us start by introducing further notation and reviewing some elementary facts, which
will lead to our proposal for a control chart to monitor changes in the location or scale of a
sequence of observations. Recall that the ch.f. of a random variable X is given by

ϕX(t) = E exp(itX) = RX(t) + iIX(t), t ∈ R,

where i2 = −1 and RX(t) = E cos(tX), IX(t) = E sin(tX), t ∈ R, are the real and imaginary
parts, respectively. The location-scale model above can be re-phrased as follows. Assume that

X satisfies X
d
= −X and let Y1, Y2, . . . be a sequence of independent random variables such

that Y1, . . . , Yq−1 follow the distribution of X and Yq, Yq+1, . . . follow a location-scale model,
Y = µ + σX, for constants µ ∈ R and σ > 0. If µ 66= 0 or σ 6= 1, then q is a change-point
(structural break point) where the location and/or scale of the measurements changes. We
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assume that the change occurs after a certain fraction of the maximum sample size N , i.e.

q = bNτc for some τ ∈ (s0, 1),

where s0 determines the start of monitoring on the [0, 1] time scale, see below. As common in
sequential detection and its applications, specifically in quality control, we tentatively assume
that the distribution of X and therefore its ch.f., ϕX , is known to us. We discuss at the end of
the present section how to handle the case when ϕX is unknown. The ch.f. of the observations
Yj , j ≥ q, after the change is ϕY (t) = RY (t) + iIY (t) with

RY (t) = cos(µt)ϕX(σt) and IY (t) = sin(µt)ϕX(σt),

by symmetry of X which implies IX = 0. Now observe that when taking the ratio, ϕX(σt)
cancels and we are left with tan(µt). This motivates to introduce the indicators

M(Y )t =
IY (t)

RY (t)
= tan(µt) and S(Y )t = R2

Y (t) + I2
Y (t) = |ϕX(σt)|2,

which are well defined on the real line under the no change hypothesis, whereas under a fixed
alternative given by µ > 0 one may select the domain

T = ∪k{(−π/(2µ) + δ, π/(2µ)− δ) + (2/µ)πk},

for t ∈ T, where δ > 0 is fixed. Notice that under a sequence of alternatives µ = µN ↓ 0,
which we shall study in Chapter 6, (−π/(2µN ) + δ, π/(2µN ) − δ) → (−∞,∞), as N → ∞,
such that the choice of T poses no problem in that setting. From now on we assume that
T = [T0, T1] for 0 < T0 < T1 < ∞, and all integrals with respect to dt are taken over the
domain of integration [T0, T1].

For our change-point model, we have the explicit formulas

M(Yi)t = tan(µt)1(i ≥ q),(2.1)

S(Yi)t = |ϕX(t)|21(i < q) + |ϕX(σt)|21(i ≥ q),(2.2)

where 1(A) = 1 if A holds true and = 0 otherwise. Notice that then the associated integrals

M =

∫ (
IY (t)

RY (t)

)2

w(t) dt, S =

∫
(R2

Y (t) + I2
Y (t))w(t) dt

corresponding to the ψ-functions ψL(z) = z2/z1 and ψS(z) = z2
1 + z2

2 , z = (z1, z2) ∈ R,
respectively, are well defined for a large class of weighting functions w(t) including the identity,
the indicator on the interval [−a, a] for some a > 0 and the choice w(t) = e−w0t frequently
used in the literature. Such weight functions are used to truncate or dampen the influence
of the tails of the characteristic function which are hard to estimate. The latter choice of
an exponential avoids sudden truncation. Further interesting candidates for such weighting
functions could be functions that are commonly used in signal processing under the names:
Bartlett’s, Hamming’s and Blackman’s windows, see, e.g., [35].

Equations (2.1) and (2.2) show that the functional M(Yi) can be used to look for a change
in the mean even in the presence of a change of the scale, whereas S(Yi) is sensible with
respect to a change in scale but remains unaffected when the location changes.
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The question arises whether or not the indicators M(Y )t and S(Y )t are unique up to
transformations. The following theorem provides the answer: Any pair of smooth functions
of the ch.f. turns out to be a pair of smooth transformations of the indicators M(Y )t and
S(Y )t. This result also justifies our choice of indicators among the class of functionals which
depend on the underlying distribution only through the characteristic function.

Theorem 2.1 Assume that RY and IY are differentiable and RY 6= 0 on some domain T.
Let W (χ, η) and U(χ, η), (χ, η) ∈ R2, be C1 transformations such that

(i) W (IY (t), RY (t)), t ∈ T, depends only on σ but not on µ and
(ii) U(IY (t), RY (t)), t ∈ T, depends only on µ but not on σ.

Then C1 transformations W and U for which (i) and (ii) hold have the following form

W (IY (t), RY (t)) = Φ(R2
Y (t) + I2

Y (t)) and U(IY (t), RY (t)) = Ψ(IY (t)/RY (t))

for all t ∈ T, where Φ and Ψ are non-constant C1 functions.

Theorem 2.1 tells us that any transformations of RY (t) and IY (t), for which properties (i)
and (ii) hold, must be univariate functions of our indicators. The proof is based on finding
the general solutions of certain partial differential equations for W and V and is given in the
appendix.

2.2. Estimates of the indicators and the decoupling effect

Given an i.i.d. sample Y1, . . . , Yn define for t ∈ T the nonparametric estimators

(2.3) R̂n(t) =
1

n

n∑
j=1

cos(t Yj) and În(t) =
1

n

n∑
j=1

sin(t Yj)

for RY (t) and IY (t), respectively. For simulation purposes select tentatively w(t) = 1 for
|t| ≤ a, a > 0 and zero, otherwise. Divide [−a, a] into 2 ` + 1 intervals of length ∆ > 0. We
shall estimate M and S as follows:

M̂n = ∆
∑̀
l=−`

[
În(l∆)

R̂n(l∆)

]2

, Ŝn = ∆
∑̀
l=−`

[
R̂n(l∆)2 + În(l∆)2

]
.

The following observation is simple but important and worthwhile mentioning, also cf. [48,
p. 233]. Recall that a statistic Tn is called a pivot w.r.t. a parameter ϑ, if its distribution does
not depend on ϑ.

Proposition 2.1 If Yi = µ+ σXi for all i = 1, . . . , n, then

(2.4) R̂n(t)2 + În(t)2 = n−1 + n−2
∑
i 6=j

cos(t σ(Xi −Xj)).

Therefore, in our setting Ŝn is a pivot w.r.t. µ.

For the sake of illustration, we have performed the following experiments. Choosing the
Gaussian N(0, 0.1) distribution as the nominal (in-control) one, for a sample of size n = 100

the pair (M̂n, Ŝn) was calculated and plotted as one point in Fig. 1. Then, these steps
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were repeated 1000 times, providing the cluster of points marked in Fig. 1 as “In Control”.
Similarly, the cluster “Var. Change” corresponds to a N(0, 0.3) distribution and the cluster
“Mean Shift” to N(0.5, 0.1), respectively. The largest cluster (“Mean & Var. Change”) was
obtained for a N(0.5, 0.3), i.e. when both parameters were changed. Fig. 1 reveals that all
four clusters can easily be distinguished and separated.

It it also interesting to note that the dispersion for the location indicator when the obser-
vations have mean 0 is substantially smaller than the dispersion of the scale indicator, which
substantially contributes to the clustering effect. Our asymptotic results provide an explana-
tion: We find that the convergence rate of the location indicator is 1/n if the observations have
mean µ = 0, whereas it is 1/

√
n otherwise. Contrary, for the scale indicator the convergence

rate is 1/
√
n for all µ ∈ R and σ > 0.

0.02 0.04 0.06 0.08 0.10 0.12 0.14
Shift Ind.0.030

0.035

0.040

0.045

0.050

Scale Indicator

Mean Shift

In Control

Var. Change

Mean & Var. Change

Figure 1.— Experimental data to illustrate, firstly, the separability of the sample indi-
cators M̂n and Ŝn to decouple changes in the mean and scale and, secondly, their different
convergence rates.

2.3. Control charts based on sequential window estimates

The theoretical as well as practical insights of the previous subsections motivate to construct
control charts for monitoring (surveillance) based on the above nonparametric estimators
for the characteristic function. We shall combine them with a sequential moving window
approach, such that only the most recent observations are used by the detectors. This approach
generally improves the detection power for late changes. After introducing these sequential
estimators, we describe the proposed detection procedures and related computational aspects.

The basic idea to obtain (sequential) estimates of M and S based on the recent data
Yi, . . . , Yn, i ≤ n, at time n is to plug in the canonical estimates and to combine this with
a rolling-window approach where a certain fraction of the most recent observations is used.
These sequential estimates are then used to construct the detectors. Thus, in the sequel of
the paper we consider the estimators

(2.5) R̂ni (t) =
1

n− i+ 1

n∑
j=i

cos(tYj),
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and

(2.6) Îni (t) =
1

n− i+ 1

n∑
j=i

sin(tYj).

Clearly, ER̂ni (t) = RY (t) and EÎni (t) = IY (t). In addition, put

Ĉni (t) = (R̂ni (t), Îni (t))′, CY (t) = (RY (t), IY (t))′

and notice that CY = CX = (RX , IY )′ if there is no change. The plug-in principle now leads
us to the estimators

Mn
i =

∫ (
Îni (t)

R̂ni (t)

)2

w(t) dt, n ∈ N,(2.7)

Sni =

∫
[R̂ni (t)2 + Îni (t)2]w(t) dt, n ∈ N.(2.8)

For Sni an explicit formula avoiding integration is known, see [12] and [48, p.233] that eases
computations provided the ch. f. of W =

∫
g(u) du is known in closed form.

We are now in a position to define the monitoring procedures in detail. In order to detect
a change, one should not use all but only the most recent data. Using the most recent k
observations leads to the choice i = n− k + 1. We assume that the effective sample size k is
chosen as a fraction of the maximum sample size, i.e.

(2.9) k = bNθc, for some θ ∈ (0, 1).

Now monitoring can be initiated at any time n0 satisfying k ≤ n0. We assume

n0 = bNs0c, for some s0 ∈ (0, 1).

This yields the sequence of rolling window control statistics Lnk, n = n0, n0 + 1, . . . , where

(2.10) Lnk = k

∫ (
Înn−k+1(t)

R̂nn−k+1(t)

)2

w(t) dt.

Notice that E(Lnk) ≥ 0. Nevertheless, we expect that the right asymptotic centering term for
Lnk when the observations are identically distributed with ch.f. given by CY = (RY , IY ) is

(2.11)

∫ (
IY (t)

RY (t)

)2

w(t) dt =

∫
tan2(µt)w(t)dt,

which vanishes under the null hypothesis, since then CY = CX and µ = 0. The factor k
appearing in the definition of Lnk anticipates the correct convergence rate according to our
asymptotic results, which also confirms that we do not have to center Lnk at its expectation.
The corresponding control chart to detect a change in the location is given by the stopping
time

(2.12) TL = TL,N = min{n0 ≤ n ≤ N : Lnk > cL}
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for some control limit cL and a time horizon N . Let us agree on the convention inf ∅ = min ∅ =
∞. The event {TL ≤ N} is interpreted as a signal at time TL indicating a change; monitoring
stops latest at time instant N when the maximum number of observations (time horizon) is
reached. The procedure to detect a change in the scale is based on

(2.13) Snk =
√
k

{∫ (
Înn−k+1(t)2 + R̂nn−k+1(t)2

)
w(t) dt−

∫
|ϕX(t)|2w(t) dt

}
.

We stop and decide in favor of a change at time

(2.14) TS = TS,N = min{n0 ≤ n ≤ N : |Snk| > cS}

for a control limit cS . In case that the in-control distribution and thus the centering term
appearing in (2.13) are unknown, it may be estimated from a learning sample. We discuss
that issue below.

Notice that from the definitions it is obvious that up to the scaling factors of the form kγ ,
γ > 0, Lnk and Snk are of the general form (1.3).

The control limits of the above detectors should be selected to ensure well-defined (nominal)
statistical properties such as a minimal ARL, a0, e.g.

ARL0(T ) = E0(T ) ≥ a0, T ∈ {TL, TS},

or a controlled type I error rate,

P0(T ≤ N) ≤ α, T ∈ {TL, TS},

for some given significance level α ∈ (0, 1), when there is no change. Here P0 and E0 denote
probability and expectation, respectively, when there is no change. For independent data and
a known in-control model, one may calculate the control limits by Monte Carlo simulation. In
the general case, one may simulate trajectories from the limit processes derived in Section 3
with estimated covariance functions. However, we shall show that subsampling leads to con-
sistent approximations, thus providing us with a feasible and powerful approach to estimate
control limits in applications. Frequently, and we shall discuss this issue below in greater
detail, the observations 1, . . . , n0 − 1 can be used as an in-control learning sample in order
to estimate unknown quantities. In particular, we may subsample from the learning sample
to estimate the control limit. One may also go beyond this and re-estimate the control limit
when running the monitoring procedure by subsampling from all available observations. This
sequential resampling approach originates in the work of [44], where it has been developed to
design a fast sequential bootstrap scheme for the detection of a change in an AR(1) model.

2.4. Case: ϕX unknown

In order to calculate Snk, we need to know the ch.f. ϕX(t). If ϕX(t) is unknown, we may
use the learning sample of size L,

Y1, . . . , YL, L = n0 − d,

which is distributed as X1, . . . , XL. d > k is used to ensure that dependencies between the
learning sample and the sample Yn0 , Yn0+1, . . . used for monitoring are sufficiently small. For
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independent data, one may put d = 1; for a MA(m) time series, d = m is a reasonable choice.
ϕX(t) can now be estimated by

(2.15) ϕ̂X(t) =
1

L

L∑
j=1

eitYj = R̂L1 (t) + iÎL1 (t), t ∈ [T0, T1].

Applying the control statistic at current time n implies that there was not yet a signal, i.e.
the data Y1, . . . , Yn are classified as being distributed as the X-process. Then one may also
use the past data reduced by the most recent 100 ·ε percent, i.e. use the estimator (2.15) with
L replaced by bn− dc, where now d = Nε, for some ε > 0.

Remark 2.1 We parametrize the relevant quantities (time horizon, size of the learning
sample, start of monitoring etc.) by N , the time horizon. The asymptotic results shall rescale
the time from [0, N ] to the unit interval [0, 1], and their extension to [0, xN ] corresponding
to [0, x], 0 < x < ∞ arbitrary, is then straightforward and also provides the asymptotics
for the non-negative real line. Equivalently, one can use the size of the learning sample L =
bN(s0 − ε)c as the parameter, such that N = %NL ∼ %L with %N = N/L→ % = (s0 − ε)−1.

3. TIME SERIES MODEL AND PRELIMINARIES ON THE SEQUENTIAL CHARACTERISTIC

PROCESS

Our approach to establish asymptotic probabilistic properties for the proposed change-point
procedures is to trace them back to a certain basic underlying sequential empirical processes,
the sequential characteristic process. After explaining those reduction steps, we introduce and
discuss our main assumption, a weak invariance principle for that process. Indeed, it already
provides us with limiting distributions. Nevertheless, we shall specialize to a general nonlinear
time series model that covers many stochastic models used in present day applications and
for which it is known that the invariance principle holds true.

The first reduction step is to observe the representations

TL = inf{n0/N ≤ u ≤ 1 : LN (u) > cL},
TS = inf{n0/N ≤ u ≤ 1 : |SN (u)| > cS},

of our control charts, if we define the continuous time control processes

(3.1) LN (u) = L
(k)
N (u) = LbNuc,k and SN (u) = S

(k)
N (u) = SbNuc,k, u ∈ [0, 1].

By continuity of the inf-type stopping times when considered as functionals on the Skorohod
space D([s0, 1];R), weak convergence results for the processes LN and SN with a.s. continuous
limits yield central limit theorems for TL and TS . Further, studying the weak limits of LN
and SN is of interest in its own right as well.

The second reduction is obtained by observing that the probabilistic properties of LN
and SN are driven by a process mathematically formalizing the rolling window estimators
which in turn are governed by a multiparameter empirical process, the sequential empirical
characteristic process

CN (s, t) =
1√
N

bNsc∑
j=1

Zj(t), with Zj(t) =

(
cos(tYj)−RX(t)
sin(tYj)− IX(t)

)
, s ∈ [s0, 1], t ∈ [T0, T1],
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associated to the functional data set (1.2), which we shall study under the no-change hypoth-
esis such that the expectation of Zj(t) is 0, since then (RY , IY ) = (RX , IY ). The reduction
steps are carried out in the proofs provided in detail in the appendix. Indeed, the proofs
only require the following weak invariance principle assumed throughout the article. For a
discussion of this approach see, e.g., [41] and [45, ch.9].

Assumption (Weak Invariance Principle): The sequential characteristic process CN con-
verges weakly to some Gaussian process C with a.s. continuous paths.

Remark 3.1 CN (s, t) is the sequential generalization of the classic characteristic process
C′N (t) = CN (1, t) that is particularly well studied for i.i.d. observations. The weak convergence
of C′N (t) to a sample continuous Gaussian process C′(t), in the space C([0, 1];R) has been
studied by [12], [27] and [9]. Introduce m(y) = λ({h ∈ (−1/2, 1/2) : ϕ(h) < y}), where ϕ(h) =
(1−RY (h))1/2 and λ denotes Lebesgue measure, and define the nondecreasing rearrangement
of ϕ(h) by ϕ̄(h) = sup{y : m(y) < h}. Then a separable version of C′(t) is a.s. continuous, if
and only if

(3.2)

∫
ϕ̄(e−x

2
) dx <∞,

and, as shown by [27], C′n(t) ⇒ C′(t) in C([−1/2, 1/2];R), if and only if that condition is
satisfied. For a symmetric d.f. F (x) which is concave for x > x0 > 0, a characterization in
terms of the tails of F is as follows: A separable version of C′ is a.s. continuous, if and only
if

(3.3)

∫ ∞
x0

(1− F (x))1/2

x(log x)1/2
dx <∞.

A further sufficient condition is

(3.4) xαF (−x) + xα(1− F (x)) = O(1), as x→∞ for some α > 0.

The latter condition is known to be valid for stable laws, cf. the discussion in [49]. Hence,
in the i.i.d. case the weak convergence particularly holds true for the large class of stable
distributions.

As an important large class of time series to which we want to specialize, let us assume
that Yn is a weakly stationary time series

(3.5) E(Yn) = 0, for all n,

which is of the form

(3.6) Yn = f(εn, εn−1, . . . ), n ∈ N,

for some measurable function f : R∞ → R and an i.i.d. noise process {εn : n ∈ Z}, such that
{Yn} is also strictly stationary.

Time series models of this type play a prominent role in various scientific areas including
financial econometrics, economics, signal processing and image processing. They arise nat-
urally when the data under consideration is preprocessed by nonlinear filters. For example,
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the well known class of GARCH models appears as a special case. Having in mind signal
processing and time series analysis in general, it is worth mentioning that in recent years
several nonlinear filters, known under the names bilateral filters or vertically weighted filters,
as studied by [42], [43], [14], [1], [7], and [37], amongst others, have been proposed that are
generalizations of the well known sigma filter [24]. Their application is wide spread in image
processing and also common in the analysis of univariate time series, although there is only
limited rigorous knowledge on their asymptotic properties.

Nonlinear time series of the form (3.6) are known to be S-mixing and for such S-mixing
series the validity of the weak invariance principle as formulated above has been shown in
[40]. Here a series {Zn} is called S-mixing, if for any k ∈ Z and m ∈ N one can find a random
variable Zkm such that

(i) there are sequences γm, δm = o(1) such that P (|Zk−Zkm| ≥ γm) ≤ δm for k ∈ Z,m ∈ N,
and

(ii) for all disjoint intervals I1, . . . , Ir ⊂ Z, r ≥ 2, and m1, . . . ,mr ∈ N, the random vectors
(Zjm1)j∈I1 , . . . , (Zjmr)j∈Ir are independent, if the lag between Ik and Il is greater than
mk +ml.

By applying the results of [40], we obtain the following basic result for the sequential
characteristic process.

Theorem 3.1 If {Yt} satisfies (3.6) and (3.5) with i.i.d. errors {εn : n ∈ Z}, then

CN (s, t)⇒ C(s, t),

as N → ∞, in the space D([s0, 1] × T;R2), for some Gaussian process with mean zero and
covariance structure given by

Cov (Ccos(s1, t1), Csin(s2, t2)) = (s1 ∧ s2)

{
γcs(0; t1, t2) + 2

∞∑
l=1

γcs(l; t1, t2)

}
,

Cov (Ccos(s1, t1), Ccos(s2, t2)) = (s1 ∧ s2)

{
γcos(0; t1, t2) + 2

∞∑
l=1

γcos(l; t1, t2)

}
,

Cov (Csin(s1, t1), Csin(s2, t2)) = (s1 ∧ s2)

{
γsin(0; t1, t2) + 2

∞∑
l=1

γsin(l; t1, t2)

}
,

s1, s2 ∈ [s0, 1], t1, t2 ∈ T, where

γsin(l; t1, t2) = Cov (sin(t1Y1+l), sin(t2Y1)),

γcos(l; t1, t2) = Cov (cos(t1Y1+l), cos(t2Y1)),

γcs(l; t1, t2) = Cov (cos(t1Y1+l), sin(t2Y1)),

for l = 0, 1, . . . and t1, t2 ∈ T

Remark 3.2 Note that for fixed t ∈ T C(s, t) is a Brownian motion. It has the scaling
property

{C(λs, t) : s ∈ λ[s0, 1], t ∈ T} d
= {λ1/2C(s, t) : s ∈ [s0, 1], t ∈ T},

and for s1, . . . , sk ∈ [s0, 1] with s1 < · · · < sk the increments C(s2, t)− C(s1, t), . . . , C(sk, t)−
C(sk−1, t) are independent.
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We are now in a position to treat the process corresponding to the rolling window estimates
(2.5) and (2.6). We rescale time using the mapping u 7→ Nu, u ∈ [0, 1]. Let us define the
sequential rolling window process centered at expectations under the null hypothesis,

C
(s,θ)
N (t) =

√
bNθc

(
R̂
bNsc
bNsc−bNθc+1(t)−RX(t), Î

bNsc
bNsc−bNθc+1(t)− IX(t)

)′
,

for 0 ≤ θ ≤ s ≤ 1, t ∈ [T0, T1], and C
(s,θ)
N (t) = 0 if θ > s. Notice that n = bNsc and k = bNθc

yields
√
k[Ĉnn−k+1(t)− C(t)]. The following result provides the asymptotics of the sequential

rolling windows process C
(s,θ)
N (t) under the null hypothesis of no change.

Corollary 3.1 We have

C
(s,θ)
N (t)⇒ Cθ(s, t), N →∞,

in the Skorohod space D([s0, 1]3;R2), where

(3.7) Cθ(s, t) =
(
C(1)
θ (s, t), C(2)

θ (s, t)
)′

= θ−1/2[C(s, t)− C(θ, t)]1{s<θ}, s0 ≤ s, t ≤ 1.

Remark 3.3 Notice that, for sake of generality, in Corollary 3.1 the process C
(s,θ)
N (t) is

studied as a process defined for (s, t, θ). However, according to Assumption (2.9) θ is fixed in
our treatment. Thus, in what follows, that process is studied as a process attaining values in
D([s0, 1]2;R2).

4. LIMIT THEORY WHEN THERE IS NO CHANGE

The asymptotic properties of the detectors TL and TS when there is no change can now be
investigated using the general results of the previous section. First we show that the proposed
location detector exhibits a qualitatively different type of asymptotics than the scale detector
and, in particular, attains a different convergence rate. The analysis is based on a functional
Taylor expansion which shows that, in general, the asymptotics depends on the ψ-function
and its analytic properties. The ψ-function used for the location detector has a vanishing first
order derivative under the no-change hypothesis such that the linear term of the expansion
vanishes, which is in contrast to the analytic properties of the ψ function used for the scale
detector.

4.1. Change-point asymptotics - Case I: ϕX known

Notice that, as indicated in Section 2, the detectors TL and TS are both of the general form

TNk(ψ) = min{n0 ≤ n ≤ N : |Lnk(ψ)| > cψ}, cψ a constant,

where the control statistic is given by

Lnk(ψ) = kγ
{∫

ψ(Ĉnn−k+1(t))w(t) dt−
∫
ψ(C(t))w(t) dt

}
, 1 ≤ k ≤ n, n ∈ N,

for some smooth function ψ : R2 → R and a rate parameter γ > 0. Here C = CX is known to
us under the no-change hypothesis. To LNk(ψ), 1 ≤ k ≤ N , we associate the continuous time
process LN (ψ) defined by

(4.1) LN (ψ)(s) = LbNsc,bNθc(ψ), s ∈ [s0, 1].
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cf. (2.9), which links N and k via the parameter θ.
Let us denote the first derivative (or gradient) of a function f by ḟ and the second derivative

(or Hessian) by f̈ . As we shall see below, the case

ψ̇(C(·))
∣∣
[T0,T1]∩W = 0, wdλ− a.e.,

where W denotes the support of the weighting function, requires a special treatment and
leads to another type of asymptotics. But let us first discuss ψ-functions where this is not the
case. As we shall show now, the proposed procedure to detect a change in the scale belongs
to these ψ-functions.

Recall the definition of Snk in (2.13) and the definition of SN in (3.1) which, when combined
with (4.1), give rise to the representations

Snk(ψ) = Lnk(ψS), and SN = LN (ψS),

if we select the ψ-function

(4.2) ψS(z) = z2
1 + z2

2 ,

for z = (z1, z2)′ ∈ R2, and γ = 1/2. Clearly, ψ̇S(z) = 2z and ψ̈S(z) = 2I, I denoting the
identity matrix of dimension 2, such that ψ̇S(C)(t) = 2C(t) 6= 0 for λ-almost all t ∈ [T0, T1].
The general result for such cases is as follows.

Theorem 4.1 Let ψ be continuously differentiable with bounded derivative such that ψ̇(C) 6=
0 except on a wdλ-null set and put γ = 1/2. Under the null hypothesis we have in the Skorohod
space D([s0, 1];R)

LN (ψ)(s)⇒ L1(ψ)(s), N →∞,

for the a.s. continuous process

L1(ψ)(s) =

∫
ψ̇(C(t))′Cθ(s, t)w(t) dt, s ∈ [s0, 1],

provided the random element on the right side of the above display is not concentrated in 0.

Due to the fact that Cθ(s, t) and ψ̇(C(t))′Cθ(s, t) are Gaussian processes and since integrals
over Gaussian processes have normal laws, we obtain the following sufficient condition for the
non-degeneracy of L1(ψ)(s). Let

Ks(t1, t2) = Cov (ψ̇(C(t1))′Cθ(s, t1), ψ̇(C(t2))′Cθ(s, t2)), t1, t2 ∈ [s0, s],

for fixed s ∈ (s0, 1]. Suppose that

σ2
s =

∫ s

s0

∫ s

s0

Ks(t1, t2)w(t1)w(t2) dt1dt2 ∈ (0,∞).

Then, cf. [39],

L1(ψ)(s) ∼ N(0, σ2
s)

such that L1(ψ)(s) cannot be concentrated in 0.
The asymptotics of the scale-detector now appears as a collorary.
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Corollary 4.1 (The Change-in-Scale Detector)
Under the above assumptions, we have

SN (s)⇒ L∗S(s) = 2

∫
[RX(t)C(1)

θ (s, t) + IX(t)C(2)
θ (s, t)]w(t) dt,

where Cθ = (C(1)
θ , C(2)

θ )′ has been defined in (3.7), and therefore

TS/N
d→ inf{s0 ≤ s ≤ 1 : |L∗S(s)| > cS},

as N →∞.

Let us now consider the proposed method to detect a change in the location, where we have
to put γ = 1 and obtain

LN = LN (ψL), if ψL(z) = (z2/z1)2,

for z = (z1, z2)′ ∈ R2 with z1 6= 0. Since

(4.3) ψ̇L(z) = 2ψL(z)(−z2z
−2
1 , z−1

1 ) and ψL(CY (t)) = (tan(µt))2, if Y1 ∼ µ+ σX,

we obtain ψ̇L(C(t)) = 0 under the null hypothesis µ = 0. The general result for such cases is
as follows.

Theorem 4.2 Let ψ be three times continuously differentiable with bounded derivatives such
that ψ̇(C(·)) = 0 except on a wdλ-null set. Put γ = 1. Under the null hypothesis of no-change

LN (ψ)(s)⇒ L2(ψ)(s) =
1

2

∫
Cθ(s, t)′ψ̈(C(t))Cθ(s, t)w(t) dt,

as N →∞, in D([s0, 1];R), provided L2(ψ) is not concentrated in 0.

Again, we have the following sufficient criterion for non-degeneracy of L2(ψ). For s ∈ (s0, 1]
let

Gs(t1, t2) = Cov (Cθ(s, t1)′ψ̈(C(t1))Cθ(s, t1), Cθ(s, t2)′ψ̈(C(t2))Cθ(s, t2)),

for t1, t2 ∈ [s0, 1]. If∫ s

s0

∫ s

s0

Ks(t1, t2)w(t1)w(t2) dt1dt2 ∈ (0,∞),

then L2(ψ)(s) follows a normal law and is therefore not concentrated in 0.

Let us compute the limit process for the change-in-location detector LN = LN (ψL). Since

ψ̈L(C(t)) =

[
0 0
0 2/RX(t)

]
,

we see that the limiting process of LN depends on Cθ(s, t) only through the second coordinate

C(2)
θ (s, t). The main result for the change-in-location detector is now as follows.
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Corollary 4.2 (The Change-in-Location Detector)
Under the null hypothesis of no change we have

LN (s)⇒ L∗L(s) =

∫ (
C

(2)
θ (s, t)

RX(t)

)2

w(t) dt,

in D([s0, 1];R) and therefore

TL/N
d→ inf{s0 ≤ s ≤ 1 : L∗L(s) > cL},

as N →∞.

4.2. Change-point asymptotics - Case II: ϕX unknown

Whereas for the location detector the centering term vanishes, cf. (2.11), Theorem 4.2 and
Corollary 4.2, we need to know the in-control ch.f. ϕX in order to calculate the scale detector,
which can be restrictive for certain applications. Then it is natural to estimate the ch.f. from
the learning sample, cf. Section 2. For asymptotics, we assume that the learning sample is

X1, . . . , XL, with L = Lε = bN(s0 − ε)c,

for some 0 < ε < s0, which serves to ensure a sufficient gap between the learning sample
and the sample used for monitoring such that dependencies die out. The case that L = Ls =
bN(s− ε)c is treated analogously and therefore omitted.

We wish to replace the centering term
∫
ψ(C(t))w(t) dt appearing in LN (ψ) by its estimate∫

ψ(ĈL1 (t))w(t) dt based on the learning sample. Let us describe the approach for the case
ϕ̇(C) 6= 0; a vanishing first order derivative can be handled analogously. Then the above ideas
give rise to the definitions

L̃N (ψ)(s) = bNθc1/2
{∫

ψ(Ĉ
bNsc
bNsc−bNθc+1(t))w(t) dt−

∫
ψ(ĈL1 (t))w(t) dt

}
,

for s ∈ [s0, 1], cf. (2.10) and (4.1), and (for fixed θ)

C(0)
N (t) =

√
bNθc[ĈL1 (t)− CX(t)], t ∈ [T0, T1].

It is clear that

C(0)
N (t)⇒ C(0)

θ (t) = θ−1/2Cθ(1, t),

as N →∞, in D([T0, T1];R2).
Our assumptions on the nonlinear time series {Yn} are focused on time series defined via

innovation series {εn} and do not automatically imply a mixing property. However, if {Yn} is

also α-mixing, which is often the case under certain regularity conditions, the process C(0)
N (t),

corresponding to the additional estimation step using the learning sample, converges jointly

with the processes C(0)
N (t) and C(s,θ)

N (t) treated in Theorem 3.1 and Corollary 3.1.
To proceed recall that a process {Zt} is called α-mixing, if

sup
t

sup
A∈Ft,B∈Ft+k

|P (A ∩B)− P (A)P (B)| → 0,

as k →∞, where F t = σ(Zs : s ≤ t) and Ft+k = σ(Zs : s ≥ t+ k).
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Lemma 4.1 Assume that, in addition to the conditions of Theorem 3.1, the process {Yn} is
α-mixing. Then we have for N →∞,

(i) (C(0)
N , CN )⇒ (C(0)

θ , C), in D([T0, T1];R2)×D([s0, 1]× [T0, T1];R2),

(ii) (C(0)
N , C(·,θ)

N )⇒ (C(0)
θ , Cθ), in D([T0, T1];R2)×D([s0, 1]× [T0, T1];R2).

Given the previous results, Lemma 4.1 allows us to derive easily the asymptotics of L̃N .

Theorem 4.3 Assume that, in addition to the conditions of Theorem 3.1, the process {Yn}
is α-mixing. Then

L̃N (ψ)(s)⇒ L̃(ψ)(s) =

∫
ψ̇(C(t))′[Cθ(s, t) + C(0)

θ (t)]w(t) dt,

in the Skorohod space D([s0, 1];R), as N →∞. The corresponding control chart,

T
L̃

= inf{n0 ≤ n ≤ N : L̃N (ψ)(n/N) > c
L̃
},

satisfies

T
L̃
/N

d→ inf{s0 ≤ s ≤ 1 : L̃(ψ)(s) > c
L̃
},

as N →∞.

5. SUBSAMPLING APPROXIMATIONS FOR DETECTORS

The statistical design of a monitoring procedure that gives a signal when a control statistic
exceeds a control limit, e.g. in order to attain a given (nominal) significance level α ∈ (0, 1),
requires to select the control limit to meet such a criterion. In general, the control limit then
depends on the (asymptotic) distribution of the associated (normed) stopping time rN , in our
case

rN ∈ {TL/N, TL̃/N, TS/N}.

Since the limiting distributions are rather involved for the proposed detectors, we propose to
use subsampling in order to obtain approximations of the required distributions. Subsampling
is a resampling technique developed for time series. It is easy to apply, usually works under
much weaker assumptions than other resampling techniques such as the block bootstrap, and
does not require case-by-case analyses as block bootstrapping. The ideas behind resampling
techniques such as subsampling and bootstrapping can be traced back to the works of [36]
and [47]. For an extensive exposition see [30].

Actually, we may even subsample the whole trajectories of our control statistics, but we
shall start our exposition with the real-valued stopping times.

In what follows, let us indicate the dependence of rN on the random variables Y1, . . . , YN
by writing rN (YN ) with YN = {Y1, . . . , YN}. The basic idea of subsampling is to construct
appropriate replicates of the control statistic and stopping time, respectively, by calculating
those quantities from subseries of length b < L from the learning sample of size L. We describe
the subsampling scheme for the more involved case rN = T

L̃
/N , the required modifications

for the other procedures are then straightforward. First, construct L− b+ 1 subsamples

Y`b = (Y`, . . . , Y`+b−1), ` = 1, . . . , L− b+ 1,



18 A. STELAND

of length b = bN ≤ L and calculate the corresponding subsampled replicates of L̃N (ψ)(s),

L̃b`(ψ)(s) = bbθcγ
{∫

ψ(Ĉ(Y`b)
`+bbsc
`∨(`+bbsc−bbθc+1)(t))w(t) dt−

∫
ψ(Ĉ(Y`b)

`+bbs0c−1
` (t))w(t) dt

}
,

where Ĉ(Y`b)vu = (R̂(Y`b)vu, Î(Y`b)vu) with

R̂(Y`b)vu =
1

v − u+ 1

v∑
j=u

cos(tYj) and Î(Y`b)vu =
1

v − u+ 1

v∑
j=u

sin(tYj),

for ` = 1, . . . , L− b+ 1. Next, one calculates the associated replicates of the stopping times,

T ∗
L̃`

(Y`b) = inf{bbs0c ≤ n ≤ b : L̃∗b`(ψ)(n/b) > c
L̃
},

leading to the subsampled replicates

rb` = T ∗
L̃`

(Y`b)/b, ` = 1, . . . , L− b+ 1.

Given those replicates, the unknown d.f. FrN of rN is then estimated by the e.d.f. of the
replicates,

F̂rN (x) =
1

L− b+ 1

L−b+1∑
`=1

1(rb` ≤ x), x ∈ R.

More generally, the unknown law PL̃N (ψ)
of the trajectory s 7→ L̃N (ψ)(s) is estimated by the

empirical measure

P̂L̃N (ψ)
=

1

L− b+ 1

L−b+1∑
`=1

δL̃b`(ψ)
,

where δx denotes the Dirac measure in a point x.
An application of the general subsampling theorem of [30] now provides us with the follow-

ing subsampling central limit theorems that show the weak consistency of the subsampling
approximations, since our results ensure that

rN
d→ r,

as N →∞, for some non-degenerated random variable r, as well as

L̃N (ψ)⇒ L̃(ψ),

as N → ∞. To formulate the result, recall that the bounded Lipschitz metric dBL(P,Q) for
probability laws P and Q defined on a metric space S endowed with a σ-field A is defined
as dBL(P,Q) = sup{|

∫
fdP −

∫
fdQ|}, where the supremum is taken over all measurable

A-measurable functions f with |f(x) − f(y)| ≤ d(x, y) and supx∈S |f(x)| ≤ 1. For the case
of subsampling the trajectories, we take the Skorohod space D([s0, 1];R). Convergence of
a sequence {Pn, P} of probability measures in the bounded Lipschitz metric implies weak
convergence, if the limit P is concentrated on a separable subset, i.e. on the set C([s0, 1];R)
of continuous functions in the case of D([s0, 1];R).
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Theorem 5.1 If the learning sample {Y1, . . . , YL}, L = bN(s0 − ε)c, satisfies (3.6) and
(3.5) with i.i.d. errors {εn : n ∈ Z} and is α-mixing, then

dBL(F̂rN , Fr)→ 0,

as N →∞, in probability, and

dBL(P̂L̃N (ψ)
, PL̃(ψ)

)→ 0,

as N →∞, in probability, where dBL denotes the bounded Lipschitz metric, provided

b

N
→ 0, b→∞,

as N →∞.

The above result can be used to design the proposed monitoring procedures. In particular,
by calculating the (1−α)-quantile of the subsampled maxima of the trajectories we obtain an
estimate for the control limit corresponding to a monitoring procedure with a nominal type
I error equal to α.

Remark 5.1 If L − b + 1 is very large, one may speed up computations by drawing (with
replacement) B times from the set of all subsamples {Y`b : ` = 1, . . . , L − b + 1} and use
the e.d.f. formed of the corresponding replicates of rN , which is very close to block bootstrap
approach, where, however, one usually chooses the block lengths relatively small and constructs
a longer time series by putting the blocks side by side.

6. ASYMPTOTICS UNDER ALTERNATIVES

This section is devoted to a detailed study of the asymptotic probabilistic behavior of
the procedures under a sequence of local alternatives. Thus, let us modify the mathematical
framework and consider a sequence of local alternative models where location (drift) and
scale approach 0 and 1, respectively, at certain rates. This means, as the maximum sample
size increases, it gets harder for the method to detect the change. When using the correct
rate, one obtains non-trivial limits which provide insights into the performance properties
in large samples. For brevity of presentation, we confine ourselves to ψ-functions such that∫
ψ̇(C(t))′Cθ(s, t)w(t) dt is a non-degenerated random variable. As shown in the previous

section, this holds true for the ψ-function corresponding to the location detector.
To proceed suppose we are given a time series {Xn} and an array of random variables
{YNi : 1 ≤ i ≤ N,N ∈ N} defined on a common measurable space (Ω,F) equipped with a
sequence of probability measures {PN}, such that

(i) {Xn} is a stationary series with Xn
d
= −Xn for all n under all PN . Further, the results

of Section 3 hold true when the series {Yn} is replaced by {Xn}, and,
(ii) for each N , under PN ,

(6.1) {YNt : t = 1, . . . , qN − 1} d
= {X1, . . . , Xq−1}

whereas

(6.2) {YNt : t = qN , qN + 1, . . . } d
= {µN + σNXt : t = qN , qN + 1, . . . },



20 A. STELAND

with

(6.3) µN = ∆µN
−1/2, σN = 1 + ∆σN

−1/2,

for two constants ∆µ and ∆σ such that (∆µ,∆σ) 6= (0, 1). The change-point qN is given
by

q = qN = bNτc

for some τ ∈ (0, 1).

Theorem 6.1 Suppose (6.1)-(6.3) and E|X|2 <∞, such that ϕX is of the class C2(A) with
supt∈A |ϕ′′X(t)| <∞ for any compact set A. Additionally, assume that T is bounded. Then

CN (s, t)⇒ Cθ(s, t) + c(s, t), N →∞,

under the sequence {PN} of probability measures, where the process Cθ(s, t) is as in Corol-
lary 3.1 and

c(s, t) = 1{s>τ}(s− τ)(ϕ′X(t)t∆σ −∆2
µt

2ϕX(t)/2,∆µϕX(t))′.

Further, under {PN} we have

C
(s,θ)
N (t)⇒ Ccθ(s, t) = θ−1/2[Cθ(s, t)− Cθ(θ, t) + c(s, t)− c(θ, t)],

as N →∞.

The above theorem shows that, asymptotically, the local alternative model affects the pro-
cess Cθ(s, t) by an additive drift which depends on s.

To discuss the resulting asymptotics of a detector based on LN (ψ) for a general ψ-function
such that ψ̇(C) 6= 0 except on a wdλ-null set, recall that the control statistic process is then
given by

LN (ψ)(s) = bNθc1/2
{∫

ψ(Ĉ
bNsc
bNsc−bNθc+1(t))w(t) dt−

∫
w(CX(t))w(t) dt

}
,

where CX = (RX , IY )′ is assumed to be known and Ĉni = (R̂ni , Î
n
i ) with

R̂ni (t) =
1

n− i+ 1

n∑
j=i

cos(tYNj), Îni (t) =
1

n− i+ 1

n∑
j=i

sin(tYNj), i ≤ n.

Theorem 6.2 Suppose the assumptions of Theorem 6.1 hold. We have under the sequence
{PN}

L′N (ψ)(s)⇒
∫
ψ̇(C(t))′Ccθ(s, t)w(t) dt, N →∞,

in the Skorohod space D([0, 1];R), as N →∞.
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7. SIMULATIONS

We investigated the control charts proposed in Section 2, in order to figure out their merits
and, in particular, to clarify to which extent the decoupling property applies in practice. One
can not expect that empirical means will behave exactly in the same way as the theoretical
expectations that appear in the definitions of our indicators. Thus, in practice, a certain
impact of changes in the mean on the variance and vice versa is unavoidable, because to some
extent random fluctuations must spoil the theoretical decoupling property. For the simulations
addressing the cases of known and unknown in-control distribution, the control limit was
obtained by simulation and chosen to control the ARL, in order to compare the results with
other studies. Our investigation of the accuracy of the subsampling approximation looks at
the type I error rate.

7.1. Simulations when the in-control distribution is known

We were interested in analyzing the statistical properties of the proposed procedures under
the Gaussian benchmark model using simulated control limits, in order to obtain valid results
on their performance as well as comparisons with existing methods. We study an early change
model where the shift in the mean (jump) is located at time zero. To ensure that the impact
of N is negligible, we put N = 10000. 64 pre-run observations were used to fill the buffer of
the detectors. All results reported below are obtained by means of 10000 simulation runs.

The thresholds cL and cS of our charts were selected by solving the nonlinear equation
ARL = 435 numerically. The control limit for the scale detector, TS , where φX is unknown
was obtained in the same way.

The results of the simulation studies for detecting a shift in the mean can be summarized
as follows (see Tab. I).
• The shift indicator behind our location chart TL provides much shorter out-of-control

ARLs than that of a CUSUM chart for small shifts in the mean, i.e. 0.1σ, 0.25σ. Also
the dispersions of the run lengths (RLs) of the shift indicator of TL chart are smaller
than those of CUSUM chart [15].
• For a shift 0.5σ the ARLs of both charts are comparable although the dispersions of

RLs are still smaller for the shift indicator of the TL chart. For larger shifts, starting
from 0.75σ, the CUSUM chart outperforms the TL chart, providing shorter ARLs. We
have observed a similar behavior in an essentially different chart proposed in [38].
• The above statements hold as well when the shift indicator of the TL chart is compared

with other charts such as the optimal EWMA, Shewhart-EWMA, GEWMA and GLR
charts, which were studied and compared by simulations in [15].

Remark 7.1 Notice that the TL chart reacts faster than the CUSUM chart, which is a bit
surprising in view of its optimality properties, cf. [26], [28]. A possible explanation is that our
TL chart uses observations following the in-control distribution right from the start. Thus, our
chart is favoured by its construction, which is reflected in its behavior for small shifts.

The aim of the second series of simulation studies was to verify to which extent the shift
in the mean indicator used in the location chart, TL, is insensitive to changes in the variance
of the observations when a shift in the mean is present. Heteroskedasticity in the sense of a
temporarily increasing and decreasing variance is present in many real data such as financial
returns. To this end, the variance was changed according to the schedules shown in Fig. 2 and
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TL Chart

Jump ARL RL Disp,

0 432.02 431.21

0.1 244.08 244.39

0.25 79.16 62.14

0.5 35.6 16.23

0.75 24.07 10.71

1 18.79 8.31

CUSUM

Jump ARL RL Disp,

0 434 436

0.1 326 323

0.25 132 123

0.5 37.2 30.4

0.75 16.7 10.8

1 10.3 5.45

TABLE I

Comparison of ARLs of the two control charts with ARL equal to 435 and independent
simulation trials with N(0, 1) errors. Left panel: TL chart for a change in the mean using a

buffer length=64. Right panel: CUSUM chart (data from [15]).

TL Chart

Jump ARL RL Disp,

0 432.02 431.21

0.1 244.08 244.39

0.25 79.16 62.14

0.5 35.6 16.23

0.75 24.07 10.71

1 18.79 8.31

TL chart plus SC1

ARL RL Disp,

437.77 435.23

238.24 238.1

78.1 61.75

33.4 16.7

23.07 10.91

18.1 8.1

TL chart plus SC2

ARL RL Disp,

416.8 412

247.2 240.7

78.8 62.4

33.3 16.2

23.7 10.6

18.7 8.25

TABLE II

Left panel: ARLs of the TL chart reproduced from Tab. I. Middle and Right panel: ARLs of
the TL chart for a variance varying according to scenarios SC1 and SC2 (Fig. 2),

respectively.

all the rest of the conditions were unchanged. The results are provided in the middle and the
right panel of Tab. II. The left panel of this table is repeated from Tab. I.

As one can notice, the location detector, TL, does not change its ARLs when fluctuations
of the variance are present, even when they are as large as here, i.e. ranging from 0.05 to 1.95
(cf. schedule scheme SC2 in Figure 2). However, when changes of the variance are large and
permanent (i.e. not fluctuating), then the ARLs of the TL chart are still relatively insensitive
to them. However, permanent changes in the variance reduce ARLs, which is likely due to
the fact that the chart is not based on a pivot statistic.

The aim of the simulations summarized in Table III was to determine ARLs to detect

50 100 150 200
n

0.90

0.95

1.00

1.05

1.10

Var.

50 100 150 200
n

0.0

0.5

1.0

1.5

2.0
Var.

Figure 2.— The schedule of changing variance when shift in the mean is to be detected:
small changes (SC1) – left panel, large changes (SC2) – right panel.
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TS chart – nominal

Scale ARL RL Disp,

1 436.4 438.1

1.25 54.8 32.1

1.5 49.5 18.7

1.75 42.9 14.5

2 39.5 13.6

TS chart plus shift

Scale ARL RL Disp,

1 411.5 415.4

1.25 55.25 28.1

1.5 47.5 18.5

1.75 40.8 1 3.7

2 38.4 13.1

TABLE III

Left panel: ARLs of the TS chart (with scale=1, i.e. in-control state). Right panel: ARLs of
the TS chart for a permanent shift in the mean of height 0.8σ occurring simultaneously with

scale changes.

Chart Prob. Remarks

TL 0.051

TL 0.054 scale SC2

TS 0.053

TS 0.055 mean shift =1.6

TABLE IV

Estimated probabilities of false alarm in each time instant for TL and TS charts. The second
row provides the same probabilities when additional scale changes according to SC2 are
present, the fourth row the probabilities of a false alarm given a permanent shift in the

mean.

changes in the scale (left table) when using the scale detector, TS , assuming σ = 1 for the
in-control process. Additionally, the r.h.s. subtable of Table III provides ARLs that were
obtained when, simultaneously with the scale change, there was also a shift in the mean.
Again, as expected from the theoretical insights, the scale indicator of the ch.f. chart, which
is based on a pivot statistic, is to a large extent insensitive to shifts in the mean when changes
in the scale are detected.

Similar conclusions can be drawn from estimated false alarm probabilities that are shown
in Tables IV and V. Those probabilities of false alarms for both charts increase by about 0.02
when additional changes in the scale (in the mean, respectively) are present (see Table IV).
In Table V the estimated probabilities of detecting changes in the location (in the scale,
respectively) with a delay of at least 30 observations are given. One can notice that the
presence of of additional changes in the scale (in the location, respectively) increases the
corresponding probabilities only slightly, except when small changes are to be detected. But
even then the increase of the ARL is small (around 0.04).

We do not provide comparisons of the scale indicator ARL’s with the well known R or S
charts, since they can not be run on individual observations.

7.2. Simulations for unknown in-control distribution

In the simulation experiments reported above we have assumed that the reference point∫
|φX(t)|2w(t) dt for the TS chart is known. This is frequently the case when runs of a pro-

duction process are well documented. However, it may happen that this reference point is
unknown and has to be estimated from a relatively small learning sample, cf. Section 2.4. In
our simulations, the reference point was estimated by calculating at time n the statistic Snk
from n, (n − 1), . . . , (n − 63). The estimator ϕ̂X(t) yielding the estimated reference point∫
|ϕ̂X(t)|w(t) dt was estimated from the samples (n − 64), (n − 65), . . . , (n − 128), but only
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jump Prob. n.d. Prob. n.d. CS1

0.2 0.227 0.229

0.4 0.159 0.201

0.6 0.109 0.119

0.8 0.066 0.057

1. 0.029 0.026

1.2 0.009 0.009

1.4 0.004 0.002

scale Prob. n.d. Prob. n. d. shift=0.8

1.5 0.209 0.252

1.7 0.071 0.070

1.9 0.013 0.016

2.1 0.007 0.006

2.3 0. 0.001

2.5 0. 0.

TABLE V

Left panel: Estimated probabilities that the TL chart detects a jump with a delay of 30 units
of time or later. The third column provides the same probabilities given scale changes

according to SC1.
Right panel: Estimated probabilities that the TS chart detects scale with a delay of 30 units

of time or later. The third column provides those probabilities given a permanent shift
change of size 0.8.

TS Chart, ref. estimated

Scale ARL RL Disp,

1 433.3 418.0

1.25 71.0 59.0

1.5 61.8 32.5

1.75 40.7 18.8

2 36.8 17.5

TS Chart, ref. estimated + shift

Scale ARL RL Disp,

1 440.9 498.0

1.25 72.3 54.0

1.5 55.8 34.5

1.75 38.6 17.8

2 36.6 16.7

TABLE VI

ARLs of TS chart (scale=1, i.e. in control) when the reference level is estimated: shift=0
(left panel), permanent shift=0.8σ (right panel).

once for each simulation run, i.e., at time instant n = 129. This way of using previous in-
control samples ensures the independence of Snk and ϕ̂X(t). The price for this is the need of
having 128 pre-run samples.

The results are summarized in Table VI. As one can notice, out of control ARLs essentially
increased in comparison to the case when the reference point is know. The reason is that the
estimation of the reference point adds additional variation to the ARLs. As it was expected,
the dispersions of run lengths increased as well, but the increase was not as large as that of
the ARLs. On the other hand, the r.h.s. panel of this table indicates that no essential changes
of ARLs and RL dispersions occur when additionally a shift in the mean is present.

7.3. Accuracy of the subsampling approach

Lastly, we investigate by a small simulation experiment the accuracy of the subsampling
procedure. Our experiment has the real data analysis of the next section in mind. Thus, we
fixed the time horizon at N = 480 and the size of the learning sample at L = 240. Instead
of selecting the control limit to achieve a certain in-control ARL, we now address the type I
error rate, cf. our discussion in Section 2.

For the subsampling approach, one has to choose the length b of the subseries. We analyzed
which choice of the block length is appropriate to achieve a type I error rate when running the
detector starting at n0 = 241 and estimating unkowns from the learning sample. To simulate
the resulting accuracy, for a simulated time series of length N the subsampling procedure uses
the first L = bNs0c observations as a learning sample to generate subsamples. Our ansatz
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Figure 3.— Kernel density estimate for SO2 data and estimated Gaussian density.

for the block length is b = bLγc. The detector is then applied to the subsamples in order to
estimate the control limit that is chosen to control the relative frequency of a signal during the
time span from bs0bc to b within the subsamples. By consistency of subsampling, we control
for the asymptotic significance level in this way. In practice, the assumption of centered in-
control observations is sometimes not ensured and practitioners then subtract the mean of
the observations from the learning sample. Thus, we took that into account. We simulated
the procedure in this way for measurements following a standard normal distribution and
for observations generated by bootstrapping from the errors of the learning sample of the
SO2 data studied in the next section, which also motivated the choice s0 = 1/2. Figure 3
provides a kernel density estimate of the SO2 data with cross-validated bandwidth choice. It
is obvious that the errors are symmetric and non-normal, which is also confirmed by applying
a Shapiro-Wilk test and the sign test for the median.

Table VII reports some simulations addressing the location chart that is based on our novel
characteristic function approach not yet studied in the literature. To improve accuracy, we
adopted the calibration procedure discussed in [31, p. 195]. We fixed γ = 0.8 and N = 480
and determined a calibration function for N(0, 1) errors by simulating the real rejection rates
for various nominal type I error rates α and fitting a polynomial of degree 2. Table VII
shows the results for N(0, 1) errors as well as for the SO2 errors; each setting as well as
each simulation step in the calibration procedure is based on 10, 000 repetitions. As one can
notice, the calibrated subsampling procedure provides accurate results even when confronted
with a highly nonnormal distribution. The table entries for N = 240 shed some additional
light on the robustness of the calibrated subsampling approximation, when using a calibration
function determined for a different maximal sample size.

8. APPLICATION TO CLIMATE DATA

For sake of illustration, we applied our procedures to a real data set of preprocessed intraday
sulfur dioxide (SO2) measurements taken every 30 minutes. Sulfur dioxide emission due to
industrial production, ship engines and volcanoes is regarded a major source of acid rain. It is
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N Simulation from N(0, 1) Bootstrap from SO2 errors
1% 5% 10% 1% 5% 10%

240 1.98% 5.05% 9.26% 2.95% 6.55% 9.58%

480 1.55% 5.10% 9.1% 1.62% 5.08% 9.23%

TABLE VII

Simulated level of the location detector with calibrated subsampling control limits.

also related to the creation of aerosols that have an effect on the climate, [25]. A major source
of the aerosols in the tropical tropopause layer is the chemical reaction of SO2 with OH,
the chemical product condensing onto particles with water, thus creating new particles at a
nanometer scale, see [22]. We set up appropriate monitoring schemes in order to detect changes
in the location and scale of such SO2 measurements. We analyzed a historic sample of N = 480
observations at the ground level corresponding to a time span of 10 days. The first L = 240
observations were regarded as in-control measurements and used as the learning sample, cf.
Figure 4 that depicts the preprocessed measurements. Thus, a time span corresponding to 5
days is monitored. We aim at designing the procedures in such a way that the type I error rate
is controlled at a fixed level α. Then a signal during the monitoring period can be regarded
as being statistically significant.

For sake of simplicity, we use the weighting function w(t) = t and T = [0, a] with a = 1/2.
For the choice of the upper limit of integration a, which could be delicate in some cases,
one could also rely on estimates of the first positive zero, see [48, chapter 3.3] and [17]. The
integrals were approximated by Riemann sums with 240 grid points. The control limits were
estimated from the learning sample by the subsampling approach with calibration using the
block length b = bLfc with f = 0.8, in order to attain an asymptotic type I error rate equal to
α = 5%. The monitoring procedures analyze the data located in a moving window defined by
the parameter k, cf. the definitions of the detector statistics (2.10) and (2.13) as well as the
definitions of the stopping times (2.12) and (2.14). We used k = 48 such that the procedures
look back one day.

Figure 5 depicts the charts, i.e. the control statistics Lnk and Snk as well as the associated
control limits. The example confirms that, when using an effective sample size k for estimation,
one should ignore the first k values of the control statistics, since with too few observations
the estimates are unstable and lead to false signals. Ignoring this start up behavior, there
are only a few signals for very short periods. The first part of the change in location starting
around the 340th time instant and lasting for ca. 40 observations is clearly detected by the
location chart, whereas the scale chart still does not react. The constant trend starting around
the 400th observation is quickly detected by our location chart and results in a more or less
diverging control statistic. The scale chart first reacts, since, in general, the first part of the
trend can not be distinguished from an increase of variability, but the duration where the
chart gives signals is in agreement with the memory parameter k = 48. However, the signals
at the end of the monitoring period could be interpreted as a certain increase of the variability
of SO2 measurements.
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Figure 4.— SO2 readings. The first 240 observations form the learning sample (dashed)
and monitoring starts at observation 241. There is a visible and substantial increase of the
SO2 exposition which is followed by a certain increase of the variability.

APPENDIX A: PRELIMINARIES

Let us denote by (Ω,F , P ) the underlying probability space on which all random variables
are defined. We are interested in the Skorohod space D([s0, 1]× [T0, T1];Rl), but in principle
one can assume that s0 = T0 = 0 and T1 = 1. Thus, for the following review of some important
facts on their definition and the concept of weak convergence (i.e. convergence in distribution)
of stochastic processes attaining values in those spaces, let us consider the function spaces
D([a, b]d,Rl) for dimensions d, l ∈ N and real numbers a, b we assume to be a = 0, b = 1 in
what follows. More information can be found in the monographs [2], [50] and the articles [29]
and [46]. As a set of functions, the space D([0, 1]d;Rl) is, basically, the uniform closure of
simple functions that attain a constant value on each cell of a partition of [0, 1]d, where one
considers as partitions all partitions {Ak} of [0, 1]d in cells given by the grid defined by the
grid points tj = j/2k, j = 1, . . . , 2k, on each coordinate and all partitions {λ(Ak)}, λ ∈ Λd,
where Λ is the class of continuous functions [0, 1]→ [0, 1] that have a continuous inverse (i.e.
homeomorphisms).

The space D([0, 1]d;Rl) can be equipped with the following Skorohod metric, see [46]. For
functions λ ∈ Λ define the modified slope norm

‖λ‖0 = sup
s,t∈[0,1],s 6=t

∣∣∣∣log
|λ(s)− λ(t)|
|s− t|

∣∣∣∣+ ‖λ− id ‖∞.

Notice that Λd defines a group of homeomorphisms on [0, 1]d and

‖λ‖0 = max
1≤j≤d

‖λj‖0, λ = (λ1, . . . , λd)
′ ∈ Λd,

defines a complete metric space (Λd, dΛ) where the metric dλ is induced by the norm ‖ • ‖0.
After these preliminaries, we may now equip the Skorohod space with the metric

d(f, g) = inf{ε > 0 : ∃λ ∈ Λd : ‖λ‖0 < ε, ‖f − g ◦ λ‖∞ < ε},
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Figure 5.— Monitoring charts with control limits (dashed lines). The first 48 values are
dashed, since they correspond to unstable estimation and should be ignored. The upper panel
shows the location chart, the lower panel depicts the scale chart for the SO2 intraday data.
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for f, g ∈ D([0, 1]d;Rl) that makes it a complete metric space. Clearly, the supnorm of f ∈
D([0, 1]d;Rl) is defined here as ‖f‖∞ = supt1,...,td∈[0,1] ‖f(t1, . . . , td)‖, ‖a‖, a ∈ Rl, being an
arbitrary vector norm. We have d(f, g) ≤ ‖f − g‖∞ such that uniform convergence implies
convergence in the Skorohod metric.

Let {X,Xn : n ∈ N} be a sequence ofD([0, 1]d,Rl)-valued processes, i.e.Xn = (Xn1, . . . , Xnl)
′,

n ≥ 1, and X = (X1, . . . , Xl)
′, where Xnj , Xj : [0, 1] → R are the corresponding coordinate

mappings. Then the finite dimensional distributions (fidis) are given by the distributions of
the matrix-valued random elements

(Xn1(tr), . . . , Xnl(tr))
k
r=1 , n ≥ 1, (X1(tr), . . . , Xl(tr))

k
r=1 ,

where t1, . . . , tk ∈ [0, 1], k ∈ N, are fixed time points. Since a sequence of random matrices
of fixed dimensions k × l converges in distribution if and only if the corresponding random
vector obtained by stacking the columns converges in distribution in the Euclidean space Rkl,
the fidi convergence Xn

fidi→ X, as n→∞, holds, if one shows that
∑k

r=1

∑l
j=1 λjrXnj(tr)

d→∑k
r=1

∑l
j=1 λjrXj(tr) for any choice of real numbers λjr, 1 ≤ r ≤ k, j = 1, . . . , l and for all

t1, . . . , tk ∈ [0, 1], k ∈ N. The weak convergence of a sequence {X,Xn} of random functions
X,Xn ∈ D([0, 1]d;Rl) is defined as the weak convergence of the measures PXn to PX , as
n → ∞. This is equivalent to convergence of the fidis plus tightness. However, we shall
make use of the Skorohod/Dudley/Wichura representation theorem (SDW theorem) in metric
spaces that we have at our disposal, see [39, Th. 4, p. 47], applied to our basic assumption on
the validity of a weak invariance principle for the sequential characteristic process. It asserts
that for a weakly convergent sequence there exists equivalent (in distribution) versions on a
new probability space that converge a.s. with respect to the Skorohod metric.

APPENDIX B: PROOFS

Proof of Theorem 2.1. The result follows immediately by observing that properties (i)
and (ii) lead to the following two partial differential equations (PDE). If W satisfies (i), then
the PDE

−ηWχ(χ, η) + χWη(χ, η) = 0

follows. Analogously, any C1 transformation satisfying (ii) yields the PDE

χUχ(χ, η) + ηUη(χ, η) = 0.

The general solutions for these PDEs are well known and of the form

W (χ, η) = Φ(χ2 + η2), U(χ, η) = Ψ(η/χ),

for non-constant C1 transformations Φ and Ψ, which completes the proof.

Proof of Theorem 3.1. For the i.i.d. case note that the CLT for random functions
X(t), Xi(t), i = 1, . . . , n, with continuous trajectories such that |X(t) − X(s)| = O(|t − s|)
satisfy the CLT. Precisely, a sufficient condition for the validity of the CLT for i.i.d. centered
random cadlag functions X(t), Xi(t), i = 1, . . . , n, with EXi(t)

2 <∞ with a limiting Gaussian
process with continuous sample paths is the existence of non-negative functions f, g on [0,∞),
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which are nondecreasing near 0, and increasing continuous functions F,G defined on [0, 1],
such that

E(X(t)−X(s))2 ≤ g(G(t)−G(s)),(B.1)

E(|X(s)−X(t)| ∧ |X(t)−X(u)|)2 ≤ f(F (u)− F (s)),(B.2)

for all s ≤ t ≤ u with u−s small, and
∫ 1

0 f
1/2(u)u−3/2 du <∞ as well as

∫ 1
0 g

1/2(u)u−5/4 du <
∞, see [3, Th. A] and [10]. Furthermore, if the Xi(t) are not centered, by virtue of [3, Prop. 1.2]
it suffices to check those conditions for the Xi(t) instead the centered versions. But in our case,
Xi(t) = cos(tYi) and = sin(tYi), respectively, such that those conditions are easily verified,
since, e.g.,

E(| cos(tY1)− cos(tY1)| ∧ | cos(tY1)− cos(uY1)|)2 ≤ E((|t− s||Y1|) ∧ (|t− u||Y1|))2,

where the right-hand side can be bounded by max(|s− t|, |u− t|)E|Y1|2 ≤ |u− s|E|Y1|2. Now
the FCLT follows from [4, Prop. 7] that provides the equivalence of the CLT and the FLCT.
For further discussions on the CLT in general spaces, we refer to see [5].

The case of a general nonlinear time series can be handled as follows. By boundedness of
sine and cosine and the fact that they have bounded variation over compact sets, the results
in [40] apply and show that both coordinate processes of CN (s, t) can be represented as linear
functionals of a single underlying process that converges weakly for a nonlinear time series
{Yt} satisfying (3.6) and (3.5) with i.i.d. errors {εn : n ∈ Z}. Thus the weak convergence of
CN (s, t) can be shown by an application of the SDW theorem. For sake of brevity, we omit
the technical details. The covariance structure follows by a direct calculation. For example,
for s1 ≤ s2 and t1, t2 ∈ T we have

Cov (Ccos(s1, t1), Csin(s2, t2)) = lim
N→∞

1

N

bNs1c∑
j=1

bNs2c∑
k=1

Cov (cos(t1Yj), sin(t2Yk))

= lim
N→∞

1

N

bNs1c∑
j=1

bNs2c∑
k=1

Cov (cos(t1Yj−k), sin(t2Y0))

= s1

{
γcs(0; t1, t2) + 2

∞∑
l=1

γcs(l; t1, t2)

}
.

Proof of Corollary 3.1. By virtue of the SDW theorem in metric spaces, we may
assume that CN → C, as N → ∞, in the uniform topology on D([s0, 1] × [T0, T1];R2). Note
that for 0 < s0 ≤ θ ≤ s ≤ 1 we have sups0≤θ≤s≤1 |bNsc/bNθc − s/θ| → 0, as N → ∞. By

definition of R̂nn−i+1 and Înn−i+1, 1 ≤ i ≤ n, n ≥ 1, we obtain

C
(s,θ)
N (t) =

√
bNθc

(
R̂
bNsc
bNsc−bNθc+1(t)−RX(t), Î

bNsc
bNsc−bNθc+1(t)− IX(t)

)′
=

1√
bNθc

bNsc∑
j=bNsc−bNθc+1

(
cos(tYj)− E cos(tYj), sin(tYj)− E sin(tYj)

)′
=

√
N

bNθc
[
CN (s, t)− CN (θ, t)

]
→ θ−1/2[C(s, t)− C(θ, t)] = Cθ(s, t),
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as N →∞, by the triangle inequality almost surely in the uniform topology. The second half
of the SDW theorem now yields the weak convergence of the original versions.

Proof of Theorem 4.1. Pick a function ψ satisfying our assumptions and consider

LN (ψ)(s) = LbNsc,bNθc(ψ)

=
√
bNθc

∫ [
ψ
(
Ĉ
bNsc
bNsc−bNθc+1(t)

)
− ψ(C(t))

]
w(t) dt.

Using the definition of the process C(s,θ)
N (t), a Taylor expansion leads us to

LN (ψ)(s) =

∫
ψ̇(c̄N (t))′

√
bNθc[ĈbNscbNsc−bNθc+1(t)− C(t)]w(t) dt

=

∫
ψ̇(c̄N (t))′C

(s,θ)
N (t)w(t) dt

for some random point c̄N (t) between Ĉ
bNsc
bNsc−bNθc+1(t) and C(t). By Corollary 3.1, we know

that the moving average process converges weakly,

C
(s,θ)
N (t) =

√
bNsc

(
Ĉ
bNsc
bNsc−bNθc+1(t)− C(t)

)
⇒ Cθ(s, t),

as N →∞, yielding

sup
s,t
|C(s,θ)
N (t)| = OP (1).

But this implies Ĉ
bNsc
bNsc−bNθc+1(t)→ C(t) uniformly in t, in probability. Noticing that C(t) is

a continuous and deterministic function, by virtue of [2, Th. 4.1], we may conclude that(√
bNsc(ĈbNscbNsc−bNθc+1(t)− C(t)), c̄N (t)

)
⇒ (Cθ(s, t), C(t)),

as N → ∞, jointly, in the product space D([s0, 1] × [T0, T1];R2) ×D([T0, T1];R2). By virtue
of SDW theorem, we may assume that for equivalent processes defined on a new probability
space a.s. convergence in the Skohorod metric and, by continuity of the limit processes, also
in the uniform topology holds true. For brevity of notation, in what follows we shall use the
same symbols for the equivalent processes. This means,

(B.3) sup
s,t

∥∥∥(√bNsc(ĈbNscbNsc−bNθc+1 − C(t)), c̄N (t)
)
− (Cθ(s, t), C(t))

∥∥∥ a.s.→ 0,

as N →∞.
Next consider the operator φ : D([s0, 1]× [T0, T1];R2)×D([s0, 1];R2)→ D([s0, 1];R2) given

by

(B.4) φ(f, ξ)(s) =

∫
ψ̇(ξ(t))′f(s, t)w(t)dt, s ∈ [0, 1],

for (f, ξ) ∈ D([s0, 1]× [T0, T1];R2)×D([T0, T1];R2). Let us agree to denote the above operator
by φ(f, ξ). Take a sequence {(fn, ξn), (f, ξ)} ⊂ D([s0, 1] × [T0, T1];R2) ×D([T0, T1];R2) with
f ∈ C([s0, 1]× [T0, T1];R2) and ξ ∈ C([s0, 1];R2), which converges in the Skorohod (product)
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topology, and therefore also in the uniform (product) topology, i.e. ‖fn−f‖∞+‖ξn−ξ‖∞ → 0,
as n→∞. Consider the decomposition

(B.5)

φ(fn, ξn)(s)−φ(f, ξ)(s) =

∫
[ψ̇(ξn(t))′−ψ̇(ξ(t))′]fn(s, t)w(t) dt+

∫
ψ̇(ξ(t))′(fn(s, t)−f(s, t))w(t) dt.

The first term can be bounded as follows.

sup
s

∣∣∣∣∫ [ψ̇(ξn(t))′ − ψ̇(ξ(t))′]fn(s, t)w(t) dt

∣∣∣∣ ≤ ∫ ‖ψ̇(ξn(t))− ψ̇(ξ(t))‖ sup
s
‖fn(s, t)‖w(t) dt

= O

(∫
‖ψ̇(ξn(t))− ψ̇(ξ(t))‖w(t) dt

)
= o(1),

by the dominated convergence theorem, since
∫
w(t) dt <∞. The supnorm of the second term

in (B.5) is not larger than ‖ψ̇‖∞‖fn − f‖∞
∫
w(t) dt = o(1). This shows that the operator φ

is continuous in the sense that

(B.6) φ(fn, ξn)→ φ(f, ξ), n→∞,

both in the Skorohod metric of the the space D([0, 1] × [T0, T1];R2) × D([T0, T1];R2) and
the corresponding uniform topology. Now apply this fact with the almost surely convergent
sequences

fN (s, t) =
√
bNsc(ĈbNscbNsc−bNθc+1(t)− C(t)) and ξN (t) = c̄N (t)

to conclude that

(B.7) LN (ψ)(s) =

∫
ψ̇(c̄N (t))′C

(s,θ)
N (t)w(t) dt→

∫
ψ̇(C(t))′Cθ(s, t)w(t) dt

almost surely in the supnorm, as N →∞. By virtue of the second half of the SDW theorem,
the almost sure convergence (B.7) implies the weak convergence of the orginal processes on
the probability space (Ω,F , P ). Thus we have shown

LN (ψ)(s)⇒
∫
ψ̇(C(t))′Cθ(s, t)w(t) dt,

as N →∞.
Proof of Theorem 4.2. Our starting point is the representation

LN (ψ)(s) = bNθc
∫ [

ψ(Ĉ
bNsc
bNsc−bNθc+1(t))− ψ(C(t))

]
w(t) dt.

Note that

bNθc
[
ψ(Ĉ

bNsc
bNsc−bNθc+1(t))− ψ(C(t))

]
=
√
bNθcψ̇(C(t))′

√
bNθc[ĈbNscbNsc−bNθc+1(t)− C(t)]

+
1

2

√
bNθc

[
Ĉ
bNsc
bNsc−bNθc+1(t)− C(t)

]′
ψ̈(C(t))

√
bNθc

[
Ĉ
bNsc
bNsc−bNθc+1(t)− C(t)

]
+OP (1/

√
N),
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where the OP term is uniform in t and s, since
√
bNθc[ĈbNscbNsc−bNθc+1(t)) − C(t)] converges

weakly to a continuous process under the imposed assumptions. Using ψ̇(C(·)) = 0 except on
a wdλ-null set, we arrive at

LN (ψ)(s) =
1

2

∫
[C

(s,t)
N ]′ψ̈(C(t))C

(s,t)
N w(t) dt+ oP (1).

Now one argues as in the proof of Theorem 4.1 to conclude that

LN (ψ)⇒ 1

2

∫
Cθ(s, t)′ψ̈(C(t))Cθ(s, t)w(t) dt,

as N →∞.
Proof of Lemma 4.1. It suffices to show (i). Let A ⊂ D([T0, T1]2;R2) and B ⊂

D([0, 1]2;R2) be measurable subsets such that A is C(0)
N -continuous and B is CN -continuous.

Since {C(0)
N ∈ A} ∈ FL1 = σ(X1, . . . , XL) and {CN ∈ B} ∈ F∞bNs0c = σ(XbNs0c, . . . ), we obtain

P (C(0)
N ∈ A, CN ∈ B) = P (C(0)

N ∈ A)P (CN ∈ B) + α(bNs0c − bN(s0 − ε)c)

= P (C(0)
θ ∈ A)P (Cθ ∈ B) + o(1),

since C(0)
N ⇒ C(0)

θ and CN ⇒ Cθ, if N → ∞, imply P (C(0)
N ∈ A) = P (C(0)

θ ∈ A) + o(1), and
P (CN ∈ B) = P (Cθ ∈ B) + o(1), as N →∞. This shows P

(C(0)N ,CN )
⇒ P

(C(0)θ ,Cθ)
, as N →∞, in

the product space, cf. [2, p. 27].

Proof of Theorem 4.3. Notice the decomposition L̃N = LN + L(0)
N . where

L(0)
N (s) = bNθc1/2

{∫
ψ(Ĉ

bNsc
bNsc−bNθc+1(t))w(t) dt−

∫
ψ(C(t))w(t) dt

}
Now the result follows easily, since by linearity for N →∞

L̃N =

∫
ψ̇(C(t))′CN (s, t)w(t) dt+

∫
ψ̇(C(t))′C(0)

N (t)w(t)dt+ oP (1)

⇒
∫
ψ̇(C(t))′[Cθ(s, t) + C(0)

θ (t)]w(t) dt

Proof of Theorem 5.1. Since by assumption {Yn : 1 ≤ n ≤ L} is α-mixing with
mixing coefficients tending to 0, we may directly apply a general subsampling result, [30,
Prop. 3.1], if we let Xi := Yi and define the roots as Rb(X`, . . . , X`−b+1; θ(Q)) = rb` and
Rb(X`, . . . , X`−b+1; θ(Q)) = L̃b`(ψ), respectively, for ` = 1, . . . , L − b + 1. In the latter case,
one uses the separable Skorohod space D([s0, 1];R).

Proof of Theorem 6.1. Put

R
(1)
Y N (t) = EN cos(tYNq), I

(1)
Y N (t) = EN sin(tYNq)

and notice that R
(1)
Y N (t) + iI

(1)
Y N (t) is the ch.f. of Yj for j ≥ q = bNτc, whereas the ch.f. of Yj

for j < q equals ϕX(t)) = RX(t)+ iIX(t). Here and in the sequel, EN denotes the expectation
under PN . Observe that in the characteristic process

CN (s, t) =
1√
N

bNsc∑
j=1

[(cos(tYNj), sin(tYNj))
′ − (RX(t), IX(t))′]
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the terms are centered at their expectation under the no-change hypothesis. We have

CN (s, t) =
1√
N

bNsc∑
j=1

(
cos(tYNj)− EN cos(tYNj)
sin(tYNj)− EN sin(tYNj)

)
+

1√
N

bNsc∑
j=1

(
EN cos(tYNj)−RX(t)
EN sin(tYNj)− IX(t)

)

=
1√
N

bNsc∑
j=1

(
cos(tYNj)− EN cos(tYNj)
sin(tYNj)− EN sin(tYNj)

)

+
bNsc − bNτc+ 1√

N

(
R

(1)
Y N (t)−RX(t)

I
(1)
Y N (t)− IX(t)

)
1(bNsc ≥ bNτc)

= C(0)
N (s, t) + cN (s, t).

Note that

cos(µN t)− 1 = −∆2
µ/2N

1/2 +O(N−1),

ϕX(σN t) = ϕX(t) + ϕ′X(t)t∆σN
−1/2 +O(N−1).

Now one easily checks that

I
(1)
Y N (t)− IX(t) = sin(µN t)ϕX(σN t) =

∆µ

N1/2
tϕX(t) +O

(
1

N

)
and

R
(1)
Y N (t)−RX(t) = [cos(µN t)− 1][ϕX(σN t)− ϕX(t)] + [ϕX(σN t)− ϕX(t)]

+ [cos(µN t)− 1]ϕX(t)

= [ϕ′X(t)t∆σ −∆2
µt

2ϕX(t)/2]N−1/2 +O(N−1/2)

where the O terms are uniform in t ∈ A for any compact set A. Thus,

cN (s, t) =
bNsc − bNτc

N

√
N

(
R

(1)
Y N (t)−RX(t)

I
(1)
Y N (t)− IX(t)

)
1(bNsc ≥ bNτc)

→ (s− τ)

(
∆µtϕX(t)

ϕ′X(t)t∆σ −∆2
µϕX(t)/2

)
1(s > t)

= c(s, t),

as N → ∞, in the Skorohod metric. To verify C(0)
N ⇒ C, as N → ∞, under the sequence

PN of probability measures, we interpret C(0)
N (s, t) as a random variable taking values in C.

Notice that by assumption (YN1, . . . , YNN ) is equal in distribution to (X1, . . . , XbNτc−1, µN +
σNXbNτc, . . . , µN + σNXN ), under PN . We have for s > t

C(0)
N (s, t) =

1√
N

bNsc∑
j=1

[eitYNj − EN (eitYNj )]

=
1√
N

bNτc−1∑
j=1

[eitYNj − ϕX(t)] +
1√
N

bNsc∑
j=bNτc

[eitYNj − eitµNϕX(σN t)]

d
=

1√
N

bNτc−1∑
j=1

[eitYNj − ϕX(t)] +
eitµN√
N

bNsc∑
j=bNτc

[eitYNj − ϕX(σN t)]
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This leads to the representation

C(0)
N (s, t)

d
= C̃N (τ − 1/N, t) + eitµN [C̃N (s, ϕN (t))− C̃N (τ − 1/N,ϕN (t))]1(bNsc > bNtc),

if we put C̃N (s, u) = N−1/2
∑bNsc

j=1 [eiuXj − ϕX(t)] for s ∈ [s0, 1], t ∈ T and ϕN (t) = σN t for
t ∈ T. The next step is to verify that the three processes on the right-side of the last display
converge jointly. Observe that C̃N (τ − 1/N, t)

C̃N (s, ϕN (t))

C̃N (τ, ϕN (t))

 = ΨN

 TN (C̃N (s, t))

C̃N (s, ϕN (t))

TN (C̃N (s, ϕN (t)))


where for N ∈ N the mappings ΨN : F → F , F = D([T0, T1];R2)×D([s0, 1]× [T0, T1];R2)×
D([T0, T1];R2), are given by

ΨN (f1, f2, f3)(t) = (f1(s, t), f2(s, ϕN (t)), f3(s, ϕN (t)))

for (f1, f2, f3) ∈ F , and TN : D([s0, 1] × [T0, T1];R2) → D([T0, T1];R2) by TN (f)(s, t) =
f(τ − 1/N, t). Clearly, ‖ϕN − id ‖∞ → 0, as N → ∞, as well as ‖TN − id ‖∞ → 0, N → ∞,
holds true on the subspace of continuous functions. Since the weak limit C of CN (under
PN ) is a.s. continuous, the continuous mapping theorem entails the joint weak convergence.
Therefore, combining this fact with (µN , σN )→ (0, 1), we may conclude that

C(0)
N (s, t)

d
= C̃N (τ − 1/N, t) + eitµN [C̃N (s, ϕN (t))− C̃N (τ − 1/N,ϕN (t))]

⇒ C(τ, t) + e0[C(s, t)− C(τ, t)] = C(s, t),

as N → ∞, which also implies CN ⇒ C + c, as N → ∞. The result for the moving-window

process C(s,θ)
N (s, t) follows now easily from the algebraic identity

C(s,θ)
N (s, t) =

√
N

bNθc
[CN (s, t)− CN (θ, t)].

Proof of Theorem 6.2. We may argue as in the proof of Theorem 4.1 and therefore
give only a sketch. As shown in Theorem 6.1,

CN (s, t)→ C(s, t) + c(s, t), and C
(s,θ)
N (t)→ Ccθ(s, t),

as N → ∞, and this convergence can be understood as a.s. convergence in the uniform
topology for equivalent versions on a new probability space. Thus, recalling that C = CX , for

some random point c̄N (t) between Ĉ
bNsc
bNsc−bNθc+1(t) and C(t), we obtain

LN (ψ)(s) =
√
bNθc

{∫
ψ(Ĉ

bNsc
bNsc−bNθc+1(t))w(t) dt−

∫
ψ(C(t))w(t) dt

}
=
√
bNθc

∫
[ψ(Ĉ

bNsc
bNsc−bNθc+1)(t)− ψ(C(t))]w(t) dt

=

∫
ψ̇(c̄N (t))′

√
bNθc[ĈbNscbNsc−bNθc+1(t)− C(t)]w(t) dt

⇒
∫
ψ̇(C(t))′Ccθ(s, t)w(t) dt,

as N →∞, by virtue of the results of Theorem 6.1.
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