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ABSTRACT: End users and distributors of PV modules are often faced with the problem of how to verify the power output 
specification of a new shipment consisting of a larger number of PV modules. As a first step, claims can be based on the data 
sheet containing information on the nominal power output (related to STC) and the power output tolerance. The question 
then arises as to the evaluation of the shipment regarding fulfilment of the power output specifications. A control 
measurement of all modules is not realistic, so that in practice a certain sample size will be randomly selected and re-
measured by a test institute. The issue is then whether the sample size is sufficient for a reliable inference and whether the 
test samples suitably represent the whole shipment. These questions often lead to disputes between module producers and 
consumers that not infrequently result in litigation. Accordingly, there is a great need for harmonised procedures suitable for 
evaluating whether the power output of a shipment lies within the manufacturer’s specifications. On the other hand, inferring 
from random samples to the properties of larger populations is a major task of applied statistics and falls within the field of 
significance testing. The latter is based on statistical hypotheses and includes so-called error probabilities in reference to both 
the producer’s risk and the consumer’s risk. On the basis of these statistical methods we developed sampling plans and 
acceptance criteria for two practical cases: a) STC performance data of modules (as measured by the manufacturer) are 
supplied with the shipment, and b) no information at all is provided. Furthermore, we distinguish between the case of a 
normal distribution of the total production population and the case where no specific distribution is assumed. Our 
calculations resulted in minimum sample sizes and acceptance criteria that both correspond to a given statistical significance 
level. Including such decision rules in the conditions of acceptance of sales contracts may be a useful approach.  
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1 INTRODUCTION 
 
 The power output specification of PV modules 
commonly refers to the maximum power point on the I-V 
characteristic that is measured under standard test 
conditions (STC). However, due to variations of the solar 
cell performance data and effects of the manufacturing 
process and the measurement system, the actual power 
output is subject to a certain scattering. The total 
production population of a given module type can 
accordingly be characterised as a parent population 
corresponding to a certain probability distribution of 
PMAX. By sorting modules into power classes we can 
define different module types with a lower production 
tolerance. Together with the nominal value µ0 of the 
module type the production tolerance is stated in the data 
sheet and usually lies within the range ±3% to ±10%. 
Figure 1 shows an example of a PMAX frequency 
distribution. If a normal distribution is assumed, 
approximately 95% of the values should lie within the 
interval µ ± 2⋅σ. 

We now wish to evaluate a population of N modules 
(shipment) as to the fulfilment of the power output 
specification. In practice, a certain number of n modules 
(sample size) are randomly selected and measured by a 
test laboratory. However, survey results show that the 
practices of test institutes for evaluating populations of 
modules with regard to fulfilment of the manufacturer’s 
specifications are not harmonised at present and can vary 
greatly. For example, sample sizes of 1% or 1−N  are 

used which can lead to considerable differences in the 
number of test samples and therefore in testing costs. A 
detailed sampling method for the power rating of 

photovoltaic modules has been developed by PowerMark 
in the US [1]. Here 7 modules are selected at random 
from a production batch or batches consisting of at least 
100 modules produced on at least 5 different days. No 
information is provided on the statistical significance of 
this approach, however. 
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Figure 1: Example of a PMAX frequency distribution of 
1741 modules with nominal power output 200 W. 
 

On the other hand, PV module manufacturers do  
conduct individual performance measurements of PV 
modules at the end of the production line by means of 
pulsed solar simulators (flashers). The measurement 
results are commonly stored in databases that can be used 
for statistical analyses. More and more often these flasher 
reports accompany PV module shipments, at the 
customer’s request. The reports afford consumers new 
ways to validate compliance with the data sheet 
specifications and directly check power ratings. 
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In this context we should mention TÜV Rheinland’s 
procedure for the “power-controlled” certification of PV 
modules [2], which assures the end user of compliance of 
module power output with the power rating. Power-
controlled certification involves the regular inspection of 
measurement equipment and measurement procedures in 
module production lines. In addition, one module per 
month is selected at random from production and shipped 
to TUV together with the flasher reports of all modules 
manufactured on the relevant days. A module type is 
deemed to fulfil power-controlled requirements if 
deviations between measurements by the producer and by 
the test lab fall within the stated production tolerance 
range. 

 Inferring from random samples to the properties of 
larger populations is a major task of applied statistics and 
falls in the field of significance testing. The latter is based 
on statistical hypotheses and includes so-called error 
probabilities with respect to both the manufacturer’s  risk 
and the consumer’s risk. We have studied the utility of 
these approaches for the validation of PV module power 
ratings. Our work aimed at developing sampling methods 
for various realistic cases and defining clear-cut 
acceptance criteria guaranteeing a certain level of 
statistical relevance subject to agreement between the 
manufacturer and the consumer. 
 
2 STATISTICAL DECISION RULES 
 
2.1 Definition of decision rules for PV modules 

A single module is called conformant (acceptable) if 
its power output lies above the threshold µ0 – ε,  where 
µ0 is the nominal power output and ε is the production 
tolerance. Otherwise the module is considered non-
conformant. p denotes the fraction (percent) of non-
conformant modules within the whole shipment. 
Intuitively, the whole shipment should be accepted if p 
lies “close” to 0 and rejected if p lies “far away” from 0.  

The actual p is usually unknown and cannot be 
determined exactly, except in the case of a total re-
measurement. Therefore the decision of accepting or 
rejecting the shipment can be based only on the control 
measurement, x=(x1,…,xn). In particular, we cannot use p 
in the decision-making. The solution is the construction 
of a suitable test function T which, based on the sample 
x, settles the acceptance or rejection of the shipment. If 
T(x) falls within a suitable acceptance range, the 
shipment will be accepted, otherwise it will be rejected.  

T is a random variable and hence the acceptance of 
the shipment is a random event. Therefore both the 
manufacturer and the consumer run the risk of deciding 
incorrectly. Incorrect decisions can be classified as 
follows: 

Consumer risk: Based on the sample, the decision rule 
accepts the shipment, although it is of low quality. 

Producer risk: Based on the sample, the decision rule 
rejects the shipment, although it is of high quality. 

A decision rule should fulfil the following 
requirements for controlling both the consumer’s and 
producer’s risks. 

(a) A high quality shipment should be accepted with 
probability not less than a given value α, which should 
be chosen as large as possible.  

(b) A low quality shipment should be accepted with 
probability not exceeding a given value β, which should 
be chosen as small as possible. 

The quality of a shipment is measured in terms of the 
proportion p of non-conformant PV modules. A shipment 
is of high quality, if the fraction of non-conformant 
modules is less than or equal to the acceptable quality 
level (AQL) pα. It is of low quality if p is greater than or 
equal to  rejectable quality level (RQL) pβ (>pα). Note 
that the proportion p is a property of the production 
process, and not a property of the decision rule. The AQL 
and RQL specify the required quality of the production 
process; both are typically small. The values α and β 
determine the error probabilities the contracting parties 
are willing to accept. The producer’s error probability is 
1-α, whereas the consumer’s error probability equals β, 
thus determining the confidence level of the decision 
rule. For practical reasons the two error probabilities are 
related as β=1−α. Here we use α=0.9 and α=0.95.  
 

Let A(p) denote the probability of the event that the 
test function T falls within the acceptance range provided 
that p is the actual proportion of non-conformant 
modules. A(p) is called the acceptance function. The 
requirements (a) and (b) can then be formalised as 
follows: 

(A)  p ≤ pα implies A(p) ≥ α  
(B)  p ≥ pβ implies A(p) ≤ β. 

Figure 2 illustrates an acceptance function satisfying 
the requirements (A) and (B). To guarantee the validity 
of (A) and (B) for a given test function, the acceptance 
range and the sample size have to be chosen properly.  

 
Figure 2: Acceptance probability of a decision rule. 
 
2.2 Parameter variation program 
 

The objective of our work was to select appropriate 
test functions for various scenarios, and to determine the 
required sample size and the corresponding acceptance 
range for a given confidence level and given AQL and 
RQL. The calculations were performed for a number of 
parameter sets that are listed in table 1. 
 

α pα β=1 − α pβ 

0.9 0.95 0.01 to 0.05 0.1 0.05 0.03 to 0.1 

Table 1: Investigated parameter ranges (decision rules) 
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The following scenarios for PV module shipments have 
been investigated: 

I. No flasher reports, arbitrary PMAX distribution 
II. No flasher reports, normal distribution of PMAX  

III. Flasher reports, normal PMAX distribution 
IV. Flasher reports, arbitrary distribution of PMAX  

 
 
3 TEST FUNCTIONS AND MINIMUM SAMPLE 

SIZES FOR PARTICULAR DECISION RULES  
 

All models assume that the nominal power output is 
specified in the manufacturer’s data sheet by µ0 and  that a 
single module is conformant if and only if its power 
output is at least µ0–ε,  where ε is the production 
tolerance; typically ε = 0.05 µ0. 
 
3.1 Scenario I 
 
 In this scenario, the consumer is assumed to have no 
information on the probability distribution of PMAX. 
Apart from the sample size n and the number N of 
modules in the whole shipment, the number T of non-
conformant sample modules is the only information the 
consumer can use in deciding on whether to accept or 
reject the shipment. T induces an appropriate decision 
rule: The shipment of PV modules will be accepted if and 
only if T ≤ c for some integer c. The choice of the 
threshold c (i.e. of the acceptance range) and the sample 
size n is the crux for assuring conditions (A) and (B) in 
Section 2.1. It turns out that c should be chosen to be the 
smallest integer for which there is some integer n 
satisfying  

G2(c+1)(1-β) / (2pβ)  ≤  n  ≤  G2(c+1)(1-α) / (2pα); 

in this case n provides the minimum sample size. Here 
G2(c+1) denotes the inverse of the distribution function of 
the χ2-distribution with 2(c+1) degrees of freedom. Note 
that our analysis is sufficiently accurate only for N ≥ 10n.  
 
3.2 Scenario II 
 
 We next assume the power outputs of the modules to 
be independent and identically normally distributed with 
unknown mean µ and unknown standard deviation σ. 
Intuitively, a necessary condition for accepting the 
shipment is that the unbiased estimate  

x = n-1∑i=1,…,n xi 

of the true µ not fall short of µ0–ε, where x1,…,xn denote 
the power outputs of the randomly chosen sample 
modules. Moreover, if the individual power outputs, and 
therefore x, spread “much” around µ, corresponding to 
“large” σ, then x should be “far” above µ0–ε. In fact, the 
size of the “safety gap” between x and µ0–ε should be 
proportional to the standard deviation σ/n1/2 of x. Hence a 
shipment is acceptable if x exceeds (µ0–ε) + c⋅(σ/n1/2), 
where c is some suitable positive factor. As σ is 
unknown, it will be replaced by its best estimator  

S = [(n-1)-1∑i=1,…,n (xi-x)2]1/2. 

Hence  

T = n1/2 (x-(µ0–ε)) / S 

induces an appropriate decision rule: The shipment of PV 
modules will be accepted if and only if T ≥ c. Again, the 
choice of the threshold c and the sample size n is the crux 
for assuring conditions (A) and (B) in Section 2.1. 
Nontrivial probability theoretical arguments yield  

n = 4Ψ(α)2 {1+[Ψ(pα)+Ψ(pβ)]2 } / [Ψ(pβ)-Ψ(pα)]2 

c = - [Ψ(pα)+Ψ(pβ)] n1/2 / 2 

where x denotes the smallest integer m satisfying x ≤ 
m, and Ψ is the inverse of the distribution function of the 
standard normal distribution. 

 

3.3 Scenario III  
 
 In this scenario, the consumer obtains the flasher list 
from the producer with PMAX–values x1

’,…,xN
’ of all N 

modules in the shipment, such that xj
’
 = Πj + ∆ + rj

’, 
where Πj is the real power output of the j-th module in 
the shipment, rj

’ refers to the measurement error and ∆ 
represents a calibration error. The consumer re-measures 
the power outputs of n randomly chosen modules, and 
obtains a sample of PMAX–values x1,…,xn also subject to 
measurement error ri but not to a calibration error. That 
is, xi = Πi + ri. We further assume the xj

’  (j=1,…N) as 
well as the xi

 (i=1,…,n) to be independent and Πj + rj
’ and  

Πi + ri = xi to be N(µ,σ2)-distributed for all shipment 
indices j and all sample indices i. The crucial point is that 
both xj

’ and xi have the standard deviation σ. Hence σ can 
be estimated by the xj

’–values from the flasher list. We 
again use the estimator S introduced in Section 3.2, 
which is now denoted by S’ to emphasis the use of 
different input data. Since there is usually a large number 
of xj

’-values (compared with the number of xi-values), S’ 
can be regarded as the true standard deviation; note that 
S’ → σ as N→∞. In other words, we now have the 
scenario of Section 3.2 with the known standard 
deviation σ (= S’). For the test function  

T = n1/2 (x-(µ0–ε)) / S’ 

and the same decision rule as in Section 3.2 we obtain 
similar formulae for the acceptance threshold and the 
sample size: 

n = 4Ψ(α)2  / [Ψ(pβ)-Ψ(pα)]2 

c = - [Ψ(pα)+Ψ(pβ)] n1/2 / 2. 

 
3.4 Scenario IV  
 

We alter the assumptions of Section 3.3 by stating 
that the power outputs are not necessarily normally 
distributed. We allow for an arbitrary continuous PMAX-
distribution with finite second moment. For the same test 
function T and the same decision rule as in Section 3.3 
we obtain 

n = 4Ψ(α)2  / [FN
-1 (pβ)- FN

-1 (pα)]2 

c = - [FN
-1 (pα)+ FN

-1 (pβ)] n1/2 / 2 

where FN
-1 is the inverse of the empirical distribution 

function of  the  random variables yj
’ = (x j

’-x’) / S’ : 

FN(y) = N-1 ∑j=1,…,N 1(-∞,y] (yj’). 
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4 RESULTS 
 
 Figure 3 illustrates the influence of the decision rule 
on the sample size n (Scenario II): 

• The sample size decreases with rising pβ. 
• The sample size increases considerably if pα is 

expanded. 
• An improvement of the probability of acceptance for 

“High quality” (α) from 0.9 to 0.95 can result in an 
increase of sample size by more than 100 modules. 

 
 A commonly used decision rule in statistical quality 
control is (α=0.95, pα=0.01, β=0.05, pβ=0.03). Figure 4 
shows the resulting optimal sample size for the different 
scenarios: 

• The sample size is smallest if PMAX is normally 
distributed. 

• The sample size for the empirical PMAX distribution 
of Fig. 2 (Scenario IV) differs considerably from 
Scenario III. This indicates that PMAX is not normally 
distributed. 

• The availability of flasher reports reduces the sample 
size considerably. At pβ=0.03 the difference is >100 
modules. 

• The best case is a sample size of 55 modules 
(Scenario III).  

 
Fig. 3 and 4 can also be used to infer the feasible 

quality claims given the sample size. Example: n=200 
and (α=0.95, pα=0.01, β=0.05) leads to pβ=0.05 for the 
blind case (Scenario I). 

0

100

200

300

400

500

600

700

800

900

0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1 0,11

Fraction of non-conforming modules pb for "low quality"

S
a
m

p
le

 S
iz

e

a=0.90, pa=0.01

a=0.95, pa=0.01

a=0.90, pa=0.03

a=0.95, pa=0.03

a=0.90, pa=0.05

a=0.95, pa=0.05

Fraction of nonconforming modules pββββ for “low quality“
 

Figure 3: Sample size for different decision rules (α, pα, 
β, pβ) calculated for Scenario II  
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Figure 4: Comparison of sample sizes for different 
scenarios (α=0.95, pα=0.01, β=0.05, pβ=variable) 

5 CHECKING THE PROBABILITY DISTRIBUTION 
FOR NORMAL DISTRIBUTION 

 
Because the optimal sample sizes for deciding 

whether to accept or reject a shipment are too optimistic 
if PMAX is not normally distributed, this assumption has 
to be checked. Many textbooks recommend a chi-square 
goodness-of-fit test, but then one must choose the 
number of classes by rule-of-thumb, which can be 
erroneous. In applied statistics a more common test is the 
Shapiro-Wilks test [3], which is implemented in many 
statistical software packages, e.g., SAS (PROC 
UNIVARIATE), R (shapiro.test), SPSS (EXAMINE 
MODULE), and Microsoft Excel (as an add-on). 

This test checks the null hypothesis H0 of normally 
distributed PMAX  measurements with unspecified mean 
and variance. The alternative hypothesis specifies an 
arbitrary non-normal distribution for the measurements. 
The software usually reports the p-value of a statistical 
test, i.e., the largest significance level, which would result 
in a rejection of H0 for the given data set. The null 
hypothesis is rejected if the p-value is less than the 
chosen significance level, e.g., 5%.  

The Shapiro-Wilks test proceeds as follows: If the 
observations are normally distributed with mean µ and 
variance σ2, the ordered values satisfy a linear regression 
model with slope equal to the variance σ2, if the i-th 
regressor is chosen as Φ-1((i-3/8)(n+1/4)). The test now 
estimates the variance σ2 by estimating the slope of the 
regression line, taking into account the correlation of the 
ordered measurements. That regression estimate is 
compared against the sample variance s2 by taking the 
ratio. Test statistical values near 1 indicate that the 
distribution may be normal. The test statistics formula 
employs a matrix calculus and is therefore omitted here. 

For the distribution of Fig. 1 the resulting p-value of 
the Shapiro-Wilks test is 10-16. The null hypothesis of 
normal distribution is therefore rejected.  
 
 
6 CONCLUSIONS 
 
 Methods of statistical quality control can be applied 
in deciding whether to accept or reject a shipment 
consisting of a larger number of PV modules. However, 
the approach presupposes that a certain fraction of non-
conformant modules is allowed, to be defined by a 
decision rule. 

 The optimal sample size depends on the decision rule 
subject to agreement between the PV module 
manufacturer and the customer. If flasher reports are 
available for inferring the PMAX distribution, the sample 
size can be reduced by up to 100 modules. 

 Because the sample size to accept or reject a 
shipment is strongly influenced by whether PMAX has a 
normal distribution, one should check this assumption on 
the basis of delivered flasher reports.  

 The definition of acceptance criteria regarding the 
fulfilment of power rating for small PV systems (<100 
modules) requires different approaches. These questions 
will be considered in a follow-up study. 
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