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Abstract: Motivated by applications in (econometric) time series analysis, we
introduce and study a sequential residual process under the assumption that the
error terms form a random walk. Based on the asymptotic distribution theory
for that process we propose a monitoring procedure (control chart) which aims at
detecting a change of the error terms from the random walk null hypothesis to the
stationary case. The procedure is related to the well known Dickey-Fuller statistic.
We provide new functional central limit theorems for the processes of interest under
mild assumptions whcih cover dependent time series data. The results also yield
the asymptotic distribution of the proposed monitoring procedure. The results are
complemented by a numerical study investigating the performance properties of the
method.
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1 Introduction

An interesting problem arising in time series analysis, particularly when dealing
with econometric data, is to decide whether a trend-like behaviour can be explained
by a deterministic trend component which is disturbed by stationary noise, or
whether the random noise forms a random walk component (unit root case). In this
paper we study a monitoring procedure based on a weighted version process version
of the well-known Dickey-Fuller (DF) test, which is perhaps the most common unit
root test. We provide functional central limit theorems for a least-squares residual
process and the DF process based on that residual process yielding the asymptotic
distribution of the proposed control chart.

Answering the unit root question has substantial implications for further anal-
yses and interpretations. Indeed, even elementary statistics as sample means have
different convergence rates and asymptotic laws if the process has a unit root in-
stead of being stationary. The simplest model catching this idea is the AR(1)
model Zt = ρZt−1 + ut, where ρ ∈ (−1, 1] and {ut} are i.i.d. with E(ut) = 0 and
E(u2

t ) ∈ (0,∞). Then ρ = 1 corresponds to the random walk case, whereas for
ρ ∈ (−1, 1) the AR(1) equation has a strictly stationary solution. In this paper we
will study a considerably more general nonparametric framework.
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Usually, so called unit-root tests are applied to test either the null hypothesis of
a unit root against the alternative of stationarity, or vice versa. However, having in
mind the importance of a correct answer, the application of sequential monitoring
procedures is of great interest. These methods aim at quick detection of departures
or changes from the so-called in-control model corresponding to the null hypothesis
to a out-of-control model which is a member of the alternative hypothesis.

In this article we study a monitoring procedure (control chart) which aims to
detect sequentially that the in-control model of a random walk with linear trend is
not or no longer valid. As a class of out-of-control (alternative) models we assume
that the time series can be described by a linear trend disturbed by stationary
noise. We consider a truncated control chart where monitoring stops latest at
the T th observation. Indeed, in many real-world applications there exists a time
horizon T , where a decision has to be made in any case or cost- and time-expensive
analyses are conducted instead of cheap and fast monitoring schemes, which are
applied between such periodical analyses.

Recall that a control chart is given by a stopping time, often of the form ST =
inf{k ≤ t ≤ T : DT (t) ∈ A} for σ(Ys : s ≤ t)-measurable control statistics DT (t),
and a rejection region A. We use the convention inf ∅ = ∞. The pair (DT , A) is
chosen to ensure that the average run length (ARL), E(ST ) =

∫
ST dP , satisfies

E0ST ≥ ξ for some prespecified value ξ, if P = P0 where P0 denotes the probability
under the in-control model (null hypothesis), whereas E1ST =

∫
ST dP1 should be

small for any P1 corresponding to an out-of-control model (alternative) of interest.
Alternatively, one may design the procedure to control the type I error, i.e., P0(ST ≤
T ) ≤ α for some given significance level α ∈ (0, 1), and aim at high power, P1(ST ≤
T ), under alternatives P1.

Let us assume that we observe sequentially a sequence {Yt : t ≥ 1} of observa-
tions satisfying the model equation

Yt = β0 + β1t + εt, t = 1, 2, . . . (1)

Here β0 and β1 are fixed but unknown parameters of the linear trend component,
and {εt} is a mean-zero error process with ε0 = 0. Note that β0 = E(Y0). We
use the following nonparametric definitions. A time series {εt} with E(εt) = 0 is
called integrated of order 0, denoted by {εt} ∼ I(0), if the partial sum process
T−1/2

∑bTsc
i=1 εi converges weakly to ηB(s), as T → ∞, where η ∈ (0,∞) is a

constant and {B(s) : s ∈ [0, 1]} denotes a Brownian motion (Wiener process). Here
we regard the processes as elements of the Skorokhod space D[0, 1] equipped with
the Skorokhod metric d. Weak convergence is denoted by ⇒. Further, a time
series {εt} with E(εt) = 0 is called integrated of order 1, denoted by {εt} ∼ I(1),
if the first order differences ∆εt = εt − εt−1 are I(0), and T−1/2εbTsc ⇒ ηB(s), as
T → ∞, for some η ∈ (0,∞). This means, if εt ∼ I(1) we have a random walk
representation εt =

∑
i≤t ηi for random variables {ηt} satisfying a functional central

limit theorem, T−1/2
∑bTsc

i=1 ηi ⇒ η′B(s), as T → ∞, for some η′ ∈ (0,∞). Note
that these definitions cover dependent time series without posing conditions on the
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degree of the dependence. Conditions for the validity of a functional central limit
theorem to (scaled) Brownian motion in terms of moment and α-mixing conditions
can be found to Herrndorf (1985).

Using these definitions we can formulate the sequential decision problem as
follows. {Yt} is in control (satisfies the null hypothesis), if H0 : {εt} ∼ I(1). The
process {Yt} gets out-of-control if for some change-point q the series {Yt : t < q}
is I(1), whereas after the change it is I(0), i.e., {Yt : t ≥ q} ∼ I(0). Usually it is
assumed that the change-point is given by

q = bTϑc,

for some ϑ ∈ (0,∞], where ϑ = ∞ corresponds to the null hypothesis.
The basic idea of the approach studied here is to eliminate the linear time

trend by calculating sequential least squares residuals. To these residuals we apply
an appropriate control chart which is able to detect stationarity. We will use a
(weighted) Dickey-Fuller control chart, cf. [11].

Let us briefly discuss some related literature. Nonparametric detection of changes
in the mean of a random walk using kernel smoothers has been studied in [10], and
the related problem for stationary weakly dependent error processes is treated in
[8]. The Dickey-Fuller unit root test was proposed by [3], and studied for various
(parametric) time series. Nonparametric procedures to detect unit roots and sta-
tionarity when there is no deterministic structure have been studied extensively by
[12] and [13]. The related problem to detect a change in a linear regression was
recently studied by [5]. The sequential process of ARMA(p, q) residuals has been
studied by [1] and applied to detect changes in the innovations.

2 Sequential Linear LS Residual Process

In this section we consider sequential least squares residuals. In contrast to the
classic case of recursive residuals, where only the current residual is calculated
using an update formula and analysed by, e.g., CUSUM methods, we study the
case where at each time point all residuals are calculated using the available data.
To our knowledge that residual process has not been studied for the I(1) case in
the literature. If we denote by t the current time point, we have the observations
Y1, . . . , Yt available to calculated estimates of the error terms ε1, . . . , εt. It is natural
to estimate the parameters (β0, β1) by least squares. Define

β̂t1 =
t∑

i=1

(Yi − Y t)(i− it)/
t∑

i=1

(i− it)2

β̂t0 = Y t − β̂t0it,

where Y t = t−1
∑t

i=1 Yi and it = t−1
∑t

j=1 j. Using these estimates we may
calculate the residuals

ε̂s(t) = Ys − β̂t0 − β̂t1s, 2 ≤ s ≤ t.
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For T ≥ t denoting the time horizon we introduce the sequential linear LS residual
process

ET (r, s) = T−1/2ε̂bTrc(bTsc), 0 ≤ r ≤ s ≤ 1.

Note that by defining ET (r, s) = ET (s, s) for s ≤ r ≤ 1 we may regard E as a
random element of the Skorokhod space D([0, 1]2). Indeed, the process we will be
interested in the next section depends only on {ET (r, s) : 0 ≤ r ≤ s ≤ 1}. We equip
D([0, 1]2) with the Skorokhod metric d. The following theorem provides an explicit
and simple representation of the distributional limit of E in terms of Brownian
motion.

Theorem 2.1. Assume model (1). If {εt} ∼ I(1), then

ET ⇒ E , T →∞,

where the a.s. continuous stochastic process E is given by

E(r, s) = η

{
B(r) +

(
6r

s2
− 4

s

) ∫ s

0

B(u) du +
(

6
s2
− 12r

s3

) ∫ s

0

uB(u) du

}
, (2)

for 0 < r ≤ s ≤ 1, and E(r, 0) = 0 for r ∈ [0, 1]. Further, E ∈ C([0, 1]2) w.p. 1.

Proof. A routine calculation shows that for t ≥ 2 and 2 ≤ i ≤ t the residual ε̂i(t) is
given by

εi −
4t + 2
t(t− 1)

t∑
j=1

εj +
6

t(t− 1)

t∑
j=1

jεj + i

− 12
t(t2 − 1)

t∑
j=1

jεj +
6

t(t− 1)

t∑
j=1

εj

 . (3)

Hence, with ZT (s) = T−1εbTsc, s ∈ [0, 1], we have for 0 < r ≤ s ≤ 1

T−1/2ε̂bTrc(bTsc) = T−1/2εbTrc

− (4bTsc+ 2)T
bTsc(bTsc − 1)

∫ s

0

ZT (u) du +
6T 2

bTsc(bTsc − 1)

∫ s

0

bTuc
T

ZT (u) du

− 12bTrcT 2

bTsc(bTsc2 − 1)

∫ s

0

bTuc
T

ZT (u) du +
6bTrc

bTsc(bTsc − 1)

∫ s

0

ZT (u) du.

By the Dudley/Skorokhod/Wichura representation theorem (Skorack and Wellner
(1986), Th. 4, p.47, and Remark 2, p.49) there exist equivalent processes, again
denoted by ZT and B, such that

‖ZT − ηB‖∞ → 0, sup
s∈[0,1]

∣∣∣∣∫ s

0

ZT (u) du− η

∫ s

0

B(u) du

∣∣∣∣ → 0,

and

sup
s∈[0,1]

∣∣∣∣∫ s

0

bTuc
T

ZT (u) du− η

∫ s

0

uB(u) du

∣∣∣∣ → 0
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as T → ∞, a.s. Noting that the above expression for T−1/2ε̂bTrc(bTsc) is a linear
combination of ZT ,

∫ s

0
ZT (u) du, and

∫ s

0
(bTuc/T )ZT (u) du, with coefficient func-

tions from the class C([0, 1]2), we may conclude weak convergence to the process

B(r)− 4η

s

∫ s

0

B(u) du +
6η

s2

∫ s

0

uB(u) du− 12r

s3

∫ s

0

uB(u) du− 6rη

s2

∫ s

0

B(u) du,

which equals E . Clearly, E is continuous w.p. 1.

As a preparation for the next section we have to show that the first order
differences of the residuals,

ût(bTsc) = ε̂t(bTsc)− ε̂t−1(bTsc), t = 2, . . . , bTsc,

yield consistent estimates for the first order differences ∆εt = εt − εt−1 of the error
terms. Indeed, a stronger result providing the (uniform) convergence rate and the
asymptotic distribution of the fluctuations of ût around ∆εt can be shown.

Theorem 2.2. Uniformly in each metric metrizing weak convergence in (D([0, 1]2), d)
we have

T 1/2{ût(bTsc)−∆εt} ⇒
6η

s2

∫ s

0

B(u) du− 12η2

s2

∫ s

0

uB(u) du,

as T →∞, i.e., in particular

|ût(bTsc)−∆εt| = OP (T−1/2) = oP (1).

Proof. First note that ût(bTsc) − ∆εt does not depend on t. Hence, it suffices to
show the assertion for a fixed t. Due to (3) we have

ût(bTsc)−∆εi =
6

bTsc(bTsc − 1)

bTsc∑
j=1

εj −
12

bTsc(bTsc2 − 1)

bTsc∑
j=1

jεj .

Again, since T−5/2
∑bTsc

j=1 jεj → η
∫ s

0
uB(u) du and T−3/2

∑bTsc
j=1 εj → η

∫ s

0
B(u) du

in the sense of weak convergence, we may assume that the convergence also holds
w.r.t. the supnorm. Therefore, we may conclude that UT (s) = T 1/2{ût(bTsc) −
∆εt} satisfies

UT (s) =
6T 2

bTs(bTsc − 1)
T−3/2

bTsc∑
j=1

εj −
12T 3

bTs(bTsc2 − 1)
T−5/2

bTsc∑
j=1

jεj

⇒ 6η

s2

∫ s

0

B(u) du− 12η2

s2

∫ s

0

uB(u) du,

as T →∞, which verifies the assertion.
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3 A Control Chart

The basic idea of the monitoring procedure proposed here is to apply the Dickey-
Fuller control chart to the sequential residuals defined and studied in the previous
section. This means, at the current time t we have observed Y1, . . . , Yt and calculate
the residuals ε̂1(t), . . . , ε̂t(t). To these residuals we apply a weighted version of the
Dickey-Fuller statistic giving rise to the sequential weighted Dickey-Fuller (DF)
residual process,

DT (s) =
bTsc−1

∑bTsc
t=1 ε̂t−1(bTsc)∆ε̂t(bTsc)K({bTsc − t}/h)

bTsc−2
∑bTsc

t=1 ε̂t−1(bTsc)2
, s ∈ [0, 1].

Here K is a so-called kernel function satisfying

(K1) K ≥ 0, 0 <
∫

K(z) dz < ∞.

(K2) K is twice continuously differentiable and of bounded variation.

Common choices are the Gaussian and Epanechnikov kernel, which satisfy K(z) ↓ 0
if |z| ↑ ∞. h = hT , T ≥ 1, is a sequence of bandwidths satisfying

ζ = lim
T→∞

T/h ∈ (1,∞).

The associated control chart (stopping time) is given by

ST = inf{k ≤ t ≤ T : DT (t/T ) < c}.

for some control limit (critical value) c. Let us assume that the start of monitoring,
k, is given by

k = bTκc

for some κ ∈ (0, 1). The following theorem can be used to choose the control
limit c by relying on the asymptotic distribution of ST /T , e.g. to ensure that
limT→∞ P0(ST ≤ T ) = α.

Theorem 3.1. Assume model (1) and (K1), (K2). If

(i) {εt} ∼ I(1),

(ii) E|∆εt|2 = σ2 ∈ (0,∞) for all t,

(iii) {|εt| : t ≥ 1} satisfies the weak law of large numbers, i.e.,
1
T

∑T
t=1{|εt| − E|εt|}

P→ 0, with µε = limT→∞
1
T

∑T
t=1 E|εt| ∈ (0,∞).

(iv) limT→∞ T−1
∑T

i,j=1 |Cov((∆εi)2, (∆εj)2)| < ∞,

then the following assertions hold.
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(i) The sequential weighted DF residual process converges weakly,

DT ⇒ D(s), T →∞,

where the process D(s) is given by

s
2{K(0)E(s, s)2 + ζ

∫ s

0
E(r, s)2K ′(ζ(s− r)) dr − σ2

∫ s

0
K(ζ(s− r)) dr}∫ s

0
E(r, s)2 dr

for s ∈ (0, 1], and E is defined in (2)

(ii) The normed DF stopping rule after detrending, ST /T , converges in distribu-
tion,

ST /T
d→ inf{s ∈ [κ, 1) : D(s) < c},

as T →∞.

Proof. We give a sketch of the proof using the techniques developed and given in
detail in [13]. Note that by definition of ûi(t) we have ε̂i(t) = ε̂i−1(t) + ûi(t) and

ε̂i−1(t)ûi(t) = (1/2){ε̂i(t)2 − ε̂i−1(t)2 − ûi(t)2}.

The last equation implies the following decomposition of the process DT :

D̂T (s) = (VT (s)−RT (s))/WT (s),

where

VT (s) =
1

2bTsc

bTsc∑
t=1

(
ε̂t(bTsc)2 − ε̂t−1(bTsc)2

)
K({bTsc − t}/h)

RT (s) =
1

2bTsc

bTsc∑
t=1

ût(bTsc)2K({bTsc − t}/h)

WT (s) =
1

bTsc2

bTsc∑
t=1

ε̂t−1(bTsc)2

Consider RT (s). Note that Theorem 3.1 and the inequality

|ût(bTsc)2 − (∆εt)2| ≤ |ût(bTsc)−∆εt|(|ût(bTsc)−∆εt|+ 2|∆εt|)

imply that

T−1
T∑

t=1

|ût(bTsc)2 − (∆εt)2| = OP (T−1/2){T−1
T∑

t=1

2|∆εt|+ OP (T−1/2)|,
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which is op(1), since P (T−1
∑T

t=1 |∆εt| > ε) ≤ P (| 2
T+1

∑T
t=0{|εt| − E|εt|}| < ε

2 −
2
T

∑T
t=0 E|εt|) → 0, as T →∞, for sufficiently large ε, by (iii).∣∣∣∣∣∣RT (s)− bTsc−1

bTsc∑
i=1

(∆εt(bTsc))2K({bTsc − t}/h)

∣∣∣∣∣∣ = oP (1).

Hence, as shown in [13], condition (ii) and (iv) imply that

sup
s∈[κ,1]

|RT (s)− µ(s)| L2→ 0,

with µ(s) = σ2/(2s)
∫ s

0
K(ζ(s− r)) dr and σ2 = E(∆εt)2. We shall now show that

for any (λ1, λ2) ∈ R2 − {(0, 0)}

λ1VT (s) + λWT (s) = φ(ET ) + oP (1) (4)

for some continuous functional φ : D([0, 1]2) → D[0, 1]. Using integration by parts
one may show as in [13] that uniformly in s ∈ (0, 1]

VT (s) =
K(0)E2(s, s)

2s
+

ζ

2s

∫ s

0

E2
T (r, s)K ′(ζ(s− r)) dr + oP (1)

= τ1(E)(s) + oP (1),

where the functional τ1 : D([0, 1]2) → D[0, 1] is given by

τ1(z)(s) =
1
2s

{
K(0)z(s, s)2 −K(ζs)z(0, s)2 + ζ

∫ s

0

z(r, s)2K ′(ζ(s, r)) dr

}
Further, by Theorem 2.1,

1
bTsc2

bTsc∑
t=1

ε̂t−1(bTsc)2 = τ2(ET )(s) + oP (1),

if τ2(z) = s−2
∫ s

0
z2(r, s) dr, s ∈ (0, 1], and τ2(0) = 0, for any z ∈ D([0, 1]2). Hence,

(4) holds with φ = λ1τ1 + λ2τ2. Now the result follows by an application of the
continuous mapping theorem.

Remark 3.2. A sufficient condition for (iii) is that γ(k) ↓ 0 if |k| ↑ ∞, where
γ(k) = Cov(|ε1|, |ε1+k|), k ∈ Z, see Brockwell and Davis (1991, Th. 7.1.1).

Remark 3.3. Note that E depends on η. Hence, the process D depends on the
parameter ϑ = η/σ. If {∆εt} are uncorrelated, we have ϑ = 1 and the limit process
is distribution-free.
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4 Numerical Analysis

We conducted a simulation study to investigate the statistical properties of the pro-
posed monitoring procedure in terms of statistical power and conditional ARL given
that the procedure gives a signal. Time series of length T = 250 were simulated
using the model

Yt = 0.5 + 0.25t + εt, 0 ≤ t ≤ T

with εt =
∑t

i=1 ui, if t < q, and εt = εq−1 +ρεt−1 +ut, if t ≥ q, where {ut} are i.i.d.
random variables with distribution N(0, 1). Note that for observations before the
change-point q the error terms εt form a random walk, whereas after the change the
error process is AR(1) with coefficient ρ. We studied the cases ρ = 0.7 and ρ = 0.
To these time series we applied the control chart ST with bandwidth h = 50. We
considered the Gaussian kernel (unbounded support) and the Epanechnikov kernel
(bounded support). To investigate power and conditional ARL we used simulated
control limits for a nominal significance level of α = 0.05.

Kernel Change-point q Rejection Rate Conditional ARL
ρ = 0 ρ = 0.7 ρ = 0 ρ = 0.7

Gauss 25 0.947 0.556 69.6 101.2
50 0.718 0.239 103.5 113.7
75 0.490 0.114 133.4 114.7
100 0.290 0.068 153.4 89.8
∞ 0.048 0.046 59.9 60.7

Epanechnikov 25 0.919 0.436 68.8 91.8
50 0.684 0.170 102.2 100.8
75 0.428 0.081 131.8 88.8
100 0.240 0.062 142.2 71.7
∞ 0.051 0.055 54.8 53.9

The conditional ARL values for q < ∞ show that often the correct decision that
there is a change can be made very early. As expected, a change to i.i.d. is detected
extremely well, whereas detection of a change to a AR(1) series with coefficient 0.7
is harder, but still satisfactory.

5 Concluding Remarks

We studied the problem to detect that the error terms in a time series with deter-
ministic trend are I(0) instead of I(1) for the special case of a linear time trend.
Here explicit and simple representations of the limit process can be derived. Over-
all, the results of the Monte Carlo are promising w.r.t. the applicability of the
procedure and, overall, confirm the theory developed in this paper.
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