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Abstract: The question whether a time series behaves as a random walk or as a stationary

process is an important and delicate problem, particularly arising in financial statistics,

econometrics, and engineering. This paper studies the problem to detect sequentially that

the error terms in a polynomial regression model no longer behave as a random walk but as

a stationary process. We provide the asymptotic distribution theory for a monitoring pro-

cedure given by a control chart, i.e., a stopping time, which is related to a well known unit

root test statistic calculated from sequentially updated residuals. We provide a functional

central limit theorem for the corresponding stochastic process which implies a central limit

theorem for the control chart. The finite sample properties are investigated by a simulation

study.

Keywords: Autoregressive unit root; Change-point; Control chart; Nonparametric smooth-

ing; Sequential analysis; Weighted partial sum process.

Subject Classifications: 62L12; 60G40; 60G50; 62M10; 62E20.



2

1. INTRODUCTION

Random walks have been proposed as reasonable models for discretely observed data in

many disciplines. In engineering, they have been proposed to model production processes

with degradation. For instance, the additive damage model assumes that damage cumulates

yielding a random walk, and the system fails if the cumulative damage reaches a threshold.

We refer to Birnbaum and Saunders (1969), Taguchi (1981, 1985), Taguchi et al. (1989),

Adams and Woodall (1989), Doksum and Hóyland (1992), Durham and Padgett (1997),

Park and Padgett (2006), Srivastava and Wu (1994, 2003), and the references given therein.

In financial statistics, random walks appear as a model for the (log) prices of an exchange-

traded asset. That idea dates back to Bachelier (1900), and nowadays there is an extensive

literature on the random walk hypothesis in the empirical finance literature, mainly ad-

dressing the question whether the increments are correlated. Random walks have also been

proposed as a model for important economic series as the gross domestic product. There-

fore, an important problem is to check sequentially whether a time series is compatible

with the random walk model or follows an alternative (out-of-control) model under which

the series is stationary.

As is well known, a false answer to that question can lead to completely wrong statistical

conclusions, since even elementary statistics change their convergence rates and limit dis-

tributions. The implications for a rich class of nonparametric kernel control charts covering,

e.g., an approximation to the classic EWMA control chart have been discussed in detail in

Steland (2004). Another popular approach to monitor both i.i.d. observations and random

walks resp. Brownian motions to detect changes in the mean is based on the CUSUM

procedure, which is known to be optimal in the sense of Lorden’s criterion. We refer to

Beibel (1996), Moustakides (1986, 2004, 2007), Ritov (1990), Siegmund (1985), Shiryaev

(1996), and to the monograph of Brodsky and Darkhovsky (2000). Having this in mind,

it is of particular interest to study sequential monitoring (surveillance) procedures, which

are designed to detect departures from the random walk hypothesis as soon as possible.
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In this article we investigate a sequential monitoring procedure which is related to a well

known unit root test studied in detail by Breitung (2002). To test the unit root null hy-

pothesis against the alternative of stationarity he proposed to use a variance ratio statistic

comparing the dispersion of partial sums with the dispersion of the observations. That

test statistic is similar to the statistic underlying the so-called variance ratio or KPSS test

proposed by Kwiatkowski et al. (1992) to test the inverse testing problem of stationarity

against the unit root alternative. Lee and Schmidt (1996) have shown that the KPSS test is

also consistent against stationary long-memory alternatives, for a further detailed study we

refer to Giraitis et al. (2003). The KPSS test is known to be powerful for many important

data generating processes and robust in terms of the type I error rate. For both testing

problems (random walk versus stationarity and vice versa) sequential monitoring (surveil-

lance) procedures based on control charts related to the variance ratio statistic have been

proposed in Steland (2007a). In that paper the original time series Y1, Y2, . . . is monitored.

Under mild conditions the asymptotic distributions of the associated stopping times have

been established under various in-control and change-point models.

Motivated by promising results from a preliminary study (Steland, 2006), this article con-

siders the more involved and delicate problem to test sequentially whether or not the error

terms in a polynomial regression model form a random walk, thus allowing for nonlinear

time trends. Assume we observe sequentially a time series {Yt : t ∈ N} of real-valued

observations satisfying

Yt = mt + εt, t ∈ N,

with E(εt) = 0 for all t. In many applications the regression function m is smooth, which

motivates to consider polynomials of known degree. Thus, we assume

(1.1) Yt = β0 + β1t + · · ·+ βpt
p + εt, t ∈ N,

where β = (β0, . . . , βp)
′ ∈ Rp+1 are unknown regression coefficients and p ∈ N0. Basically,

the aim is to detect a departure from the in-control model that the error terms form a

random walk in favor of a stationary process. Note that the model covers the case that

before the change a Brownian motion with polynomial drift, ξ(t) = µ(t) + σB(t), where B

denotes standard Brownian motion, σ > 0 is a constant, and µ(t) =
∑p

j=0 βjt
j, is discretely
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sampled at time instances t = 1, 2, . . . , q − 1. In this case εt = σB(t) ∼ N(0, σ2t), i.e., the

variance is a linear function of time. After the change we observe ξ(t) = µ(t)+σB(q)+η(t),

t = q, q + 1, . . . , where η(t) is a stationary process; e.g. given by a continuous-time moving

average,

η(t) =

∫ t

−∞
ϕ(t− s) dB(s),

for some function ϕ with
∫

ϕ2(t) dt < ∞. Our results allow for substantially more general

error sequences.

Since for many practical applications the most important alternative model is a (poly-

nomial) time trend with stationary errors, we will apply a control chart (stopping time)

providing a signal, if there is evidence that the errors are no longer compatible with the ran-

dom walk hypothesis. We provide the asymptotic distribution theory under the in-control

model that the error terms behave as a random walk but allow for an unknown polynomial

time trend. Further, we establish results under a change-point model where the errors form

a stationary process after an unknown change-point. Since our results provide the asymp-

totic distribution of the stopping time, one may design a surveillance procedure according

to various criteria. Particularly, our results allow to design the procedure to guarantee a

specified asymptotic significance level (type I error rate). If we get a signal, the classic poly-

nomial regression model with stationary errors can be regarded as statistically confirmed,

which is an attractive property for many applications.

We study the intuitive approach to calculate the least squares residuals and to apply an

appropriate monitoring procedure to these residuals. In sequential analysis, recursive resid-

uals are often used, see the classic paper by Brown et al. (1975), and Sen (1982), mainly

because they are fast to compute. However, having in mind contemporary computing facil-

ities, we introduce sequentially updated residuals, where at each step the full set of residuals

is calculated. We consider a monitoring procedure with a time horizon T where monitoring

stops, because in many real applications it is unrealistic to assume that monitoring can be

conducted forever. However, the modifications of the results to allow for infinite monitoring

are straightforward and briefly discussed.
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The rest of the paper is organized as follows. In Section 2 we specify and discuss the as-

sumptions on the error terms and introduce the proposed procedure and required regularity

conditions. The asymptotic results for the process of sequentially updated residuals, the

process associated to the proposed control statistic, and for the resulting stopping time,

are discussed in detail in Section 3 under the in-control model that the regression errors

behave as a random walk. The results are constructive in the sense that explicit represen-

tations of the asymptotic error process can be obtained in terms of the moment functions,∫ s

0
tkB(t) dt, s ∈ [0, 1], k ∈ N, associated to a standard Brownian motion B, which makes

simulation from the limiting processes feasible. Section 4 gives asymptotic results under a

change-point model where the behavior changes after a certain fraction of the data from a

random walk behavior to a stationary process. We report in Section 5 about a simulation

study which examines some finite sample properties of the method. Proofs of the main

results of this paper are postponed to appendices.

2. MODEL, ASSUMPTIONS, AND THE METHOD

2.1. Model and Assumptions. It remains to specify model (1.1) in detail. We assume

that the error terms, εt = Yt − mt, in model (1.1) form an AR(1) model with possibly

correlated but weak dependent innovations (for precise assumptions see below), i.e.,

(2.1) εt = ρtεt−1 + ut, t ∈ N,

where ρt ∈ (−1, 1] are unknown parameters. If ρt = ρ = 1 for all t, {Yt} is a random walk

and integrated of order 1, I(1). Here and throughout the paper we simply write {Yn} if the

index set is clear. For |ρ| < 1 stationary solutions of the above equation exist.

We consider the following change-point testing problem. The null hypothesis,

H0 : ρt = 1 for all t,

states that the error terms of the regression model form a random walk, i.e., are integrated

of order 1. The alternative H1 = ∪q≥1H
(q)
1 with

H
(q)
1 : ρt = 1, t < q, ρt = ρ, t ≥ q, |ρ| < 1
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specifies that there exists a change-point such that the subseries {εt : t ≥ q} satisfies

stationary AR(1) equations. It is important to note that the method proposed in this

paper does not require any specification of an alternative. In Section 4 we introduce a

specific change-point model related to this testing problem.

Let us consider an example.

Example 2.1. Assume εt = p(L)ξt with ξt i.i.d. N(0, σ2
ξ ) for some σξ > 0, p(z) =∑q

j=0 αjz
j with coefficients αj ∈ R, L the lag operator given by Lεt = εt−1. Suppose that

the characteristic polynomial, 1 − p(z), has exactly one unit root of multiplicity 1. Then

p∗(z) = p(z)/(1−z) can be inverted, and we obtain the representation (1−L)εt = p∗(L)−1ut,

i.e.,

εt = εt−1 +
∑
j≥0

βjut−j,

for certain coefficients βj, see Brockwell and Davis (1991, Sec. 3.3). Thus, MA(q)-models

with an unit root appear as a special case for the error terms in model (1.1) under the null

hypothesis.

Concerning the error terms {ut} we shall assume the following mild nonparametric regu-

larity condition making precise our understanding of weak dependence.

(E) {ut : t ∈ N} is strictly stationary with mean zero and E|u1|2 < ∞ such that

∞∑
t=1

|Cov (u1, u1+t)| < ∞,

and satisfies a functional central limit theorem (FCLT), i.e.,

(2.2) T−1/2
∑

i≤bTsc

ui
w→ ηB(s), T →∞,

for some constant 0 < η < ∞. Here B denotes a Brownian motion with B(0) = 0,

and
w→ stands for weak convergence in the Skorohod space D[0, 1]. Skorohod spaces

are briefly discussed at the end of this section.

Remark 2.1. (i) By the Skorohod-Wichura-Dudley representation theorem (Pollard

(1984), Ch. IV.3, Theorem 13), a condition as (2.2) is equivalent to the condition:
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There are Brownian motions BT , T ≥ 1, such that

sup
s∈[0,1]

∣∣T−1/2
∑

i≤bTsc

ui − ηBT (s)
∣∣ = oP (1), T →∞.

(ii) Combining model (2.1) with ρt = 1 for all t under the assumption (E) yields a

nonparametric approach to define the I(1)-property of a time series.

As an example satisfying the assumption (E) let us discuss briefly ARCH(∞) models, a

popular parametric class of time series models.

Example 2.2. Recall that {Xt} satisfies ARCH(∞) equations, if there exists a sequence

of i.i.d. non-negative random variables {ξj}, such that

Xj = ηtξt, ηt = a +
∞∑

j=1

bjXt−j,

where a ≥ 0, bj ≥ 0 for j ∈ N. Suppose now that

ut = σtet

where {et} are i.i.d. with E(et) = 0 and E(e2
t ) = 1. Put σt = ηt and ξt = e2

t to embed

the classic ARCH model into the above ARCH(∞) framework. Giraitis, Kokoszka and

Leipus (2001, Example 2.2 and Theorem 2.1) have shown that {ut} satisfies (E) provided

E|e1|4 < ∞ and

(Eξ4
1)

1/4

∞∑
j=1

bj < 1.

2.2. Monitoring Procedure. Our stopping time defining the detector essentially relies

on a weighted version of the KPSS test statistic, see Kwiatkowski et al. (1992), Breitung

(2002), and Steland (2007a). At each time point t ≤ T when a new observation is available,

we calculate the full set of residuals ε̂1(t), . . . , ε̂t(t) using all available observations Y1, . . . , Yt.

Using these sequentially updated residuals, we calculate an appropriately weighted version

of the unit root test statistic. Define

Ut =
t−4
∑t

i=1

(∑i
j=1 ε̂j(t)

)2
K((i− t)/h)

t−2
∑t

j=1 ε̂2
j(t)

, t ≥ p + 1.
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In these formulas K, called kernel, is a nonnegative function with
∫

K(z) dz < ∞. Kernels

such that K(z) is decreasing for increasing |z| as the Gaussian kernel or the Epanechnikov

kernel given by z 7→ (3/4)1[−1,1](1 − z2), z ∈ R, have the intuitive appeal that recent

summands get higher weights than past ones. However, our main results work under the

following weak conditions:

(K1) ‖K‖∞ < ∞,
∫

K(z) dz = 1, and
∫

zK(z) dz = 0.

(K2) K is Lipschitz continuous.

The parameter h = hT is used as a scaling constant in the kernel and defines the memory

of the procedure. For instance, if K(z) > 0 for z ∈ [−1, 1], and K(z) = 0 otherwise, Ut

looks back h observations. We will assume that

lim
T→∞

T/hT = ζ ∈ [1,∞).

That condition ensures that the number of observations used by the procedure gets larger

as T increases.

The KPSS or variance ratio control chart is defined as

RT = inf{k ≤ t ≤ T : Ut ≤ cR}, T ≥ k,

with the convention inf ∅ = ∞. T is the time horizon where monitoring stops. For our

asymptotic results we assume T →∞, since for applications approximations of the distri-

bution of RT for moderate and large time horizons T are of interest. cR is a control limit

(critical value) chosen by the statistician.

It remains to discuss how to choose the control limit cR. Since monitoring stops latest at

time T , we may interpret the stopping time as a hypothesis test with early stopping in

favor of the alternative. Thus, one may choose cR to control asymptotically the type I error

rate of a false decision in favor of stationarity, i.e.,

(2.3) lim
T→∞

P0(RT ≤ T ) = α,

for some given α ∈ (0, 1). Here P0 indicates that the probability is calculated under the null

hypothesis. Alternatively, one may control a conditional version of the in-control average

run length (CARL). Note that the stopping time RT takes values in the set {k, . . . , T} ∪
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{∞}, where ∞ represents no signal, which is the preferred event under the in-control

model. Now we may choose cR such that CARL0 = E0(RT |RT < ∞) is greater or equal to

some given value ξ ∈ (k, T ). Since our results provide the asymptotic distribution of the

stopping time RT , one may also choose the control limit to control other characteristics,

e.g., the (conditional) median average run length. For simplicity of exposition we shall

assume in the sequel that cR is chosen such that (2.3) holds.

We will assume that monitoring starts after a certain fraction of the data, i.e.,

k = bTκc, for some κ ∈ (0, 1),

to avoid that inference is based on too few observations at the beginning. The event RT ≤ T

is interpreted as evidence for stationary innovations, and we get that information after RT

observations instead of waiting until time T . If RT = ∞, the random walk hypothesis for

the error terms is regarded as compatible with the observed data.

2.3. Extension to Infinite Time Horizon. Suppose we observe sequentially an infinite

sequence Y1, Y2, . . . and want to monitor this series with the detection rule

inf{k ≤ t < ∞ : Ut ≤ cR}.

In this context T is simply used to define an appropriate time scale to determine the

bandwidth sequence hT with T/hT → ζ. The FCLT (2.2) is replaced by

{T−1/2
∑

i≤bTsc

ui : s ∈ [0,∞)} w→ {ηB(s) : s ∈ [0,∞)},

as T →∞, where convergence takes place in the space D[0,∞) instead of D[0, 1]. All limit

theorems in this paper are formulated for the time interval [κ, 1], i.e., in the space D[κ, 1],

but are valid for D[κ, z] for any fixed 1 < z < ∞. Xn
w→ X in D[0,∞) is equivalent to

gm(t)Xn(t)|[0,m]
w→ gm(t)X(t)|[0,m]

in D[0, m] for each integer m, where gm(t) = 1[0,m−1](t) + (m − t)1[m−1,m](t), t ∈ [0,∞),

see Billingsley (1999, Sec. 16) or Pollard (1984, Ch. VI.) Thus the results carry over to

D[κ,∞). Hence, there is no loss in generality to consider the time interval [0, κ].
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2.4. Skorohod Spaces. In this paper we will use the notion of weak convergence in the

Skorohod space D([0, 1]2; Rk). Denote the Skorohod space of cadlag functions [0, 1] → R
by D[0, 1] = D([0, 1]; R). Compared to D[0, 1] the space D([0, 1]2; Rk) has been only rarely

used in the literature. Therefore, we close this section with a brief exposition of the most

important definitions and facts.

Recall that a sequence {X,Xn} of random elements with values in a metric space converges

weakly, denoted by Xn
w→ X, as n →∞, if Eh(Xn) → Eh(X), n →∞, for all measureable

real functions which are bounded and continuous w.r.t. the metric. For a detailed classic

treatment of these issues we refer to Billingsley (1999).

Equip D[0, 1] with the Skorohod metric d yielding a complete and separable metric space.

For p ∈ N let DRp [κ, 1] = D([κ, 1]; Rp) denote the space of all cadlag functions [κ, 1] → Rp

which we equip with the metric dp(f, g) =
∑p

i=1 d(fi, gi), f = (f1, . . . , fp)
′, g = (g1, . . . , gp)

′,

fi, gi : [0, 1] → R, i = 1, . . . , p. The treatment of its generalization to the index set [0, 1]2,

i.e., D([0, 1]2; R), is more subtle. Let us briefly recall some facts about this function space

and weak convergence of sequences of D([0, 1]2; R)-valued random elements, as studied by

Straf (1970), Bickel and Wichura (1971), and Neuhaus (1971). The space D([0, 1]2; R) can

be defined as the uniform closure of the vector subspace of all simple functions, i.e., linear

combinations of functions of the form t 7→ 1E1×E2(t) where each Ei is either a left-closed,

right-open subinterval of [0, 1], or the singleton {1}. Here the closure is taken in the space

of all bounded functions [0, 1]2 → R. For functions f, g ∈ D([0, 1]2; R) an appropriate

metric, d2(f, g), is defined as the smallest ε > 0 such that there exist continuous bijections

λ1, λ2 : [0, 1] → [0, 1] with ‖λ − id ‖∞ ≤ ε and ‖f − g ◦ λ‖∞ ≤ ε. Here λ = (λ1, λ2) and

g ◦λ(r, s) = g(λ1(r), λ2(s)) for (r, s) ∈ [0, 1]2. A sequence {fn} ⊂ D([0, 1]2; R) converges to

some f ∈ D([0, 1]2; R) iff there exists some sequence {λn} of pairs of continuous bijections

[0, 1] → [0, 1] such that ‖fn ◦ λn − f‖∞ → 0 and ‖λ − id ‖∞ → 0, as n → ∞. Further, if

f ∈ C([0, 1]2; R) convergence in the Skorohod metric implies uniform convergence, since

in this case f is uniformly continuous. It turns out that (D([0, 1]2; R), d2) is a separable

metric space, a common framework to define weak convergence of probability measures

and random elements.
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3. ASYMPTOTIC RESULTS FOR INTEGRATED

PROCESSES

This section is devoted to a detailed study of the proposed procedure unter the null hypoth-

esis that the error terms of the regression model behave as a random walk. Our approach

is to represent the KPSS control chart as an inf-functional of the stochastic process asso-

ciated to the sequence {Ut}. That process turns out to be a functional of the stochastic

process associated to the residuals up to negligible terms. We provide functional central

limit theorems for these processes and a central limit theorem for the stopping time RT .

We need some notations. Let Xn denote the design matrix for a polynomial regression of

order p with intercept based on n observations, i.e.,

Xn =


1 1 · · · 1

1 2 · · · 2p

...
...

...

1 n · · · np

 = [x1, . . . ,xn]′,

where

xt = (1, t, . . . , tp)′.

Define for p + 1 ≤ t ≤ T the random vectors

εt = (ε1, . . . , εt)
′

ε̂t = (It −Xt(X
′
tXt)

−1X′
t)Yt,

with Yt = (Y1, . . . , Yt)
′. It denotes the t-dimensional identity matrix.

3.1. Residual Process without Updating. Let us first consider the natural process

associated to the sequence ε̂1, . . . , ε̂T of residuals, where at time t the current residual ε̂t is

simply added to the residuals ε̂i, bTκc ≤ i < t. Here the former residuals are not updated.

In the sequel bTsc stands for the current time point. The stochastic process associated to

ε̂1, . . . , ε̂T is given by

ÊT (s) = T−1/2ε̂bTsc, s ∈ [κ, 1],
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where ε̂t = 0 for 0 ≤ t < p + 1, and

ε̂bTsc = YbTsc − x′bTsc(X
′
bTscXbTsc)

−1X′
bTscYbTsc

is the last coordinate of the vector ε̂bTsc = (ε̂1, . . . , ε̂bTsc)
′.

We have to introduce the weighting matrix

Wt = diag (1, t−1, . . . , t−p), t ∈ N,

to take into account the order of the polynomial regressors.

Lemma 3.1. Fix κ ∈ (0, 1). Assume (E). Then

T−3/2WbTscX
′
bTscεbTsc

w→ η

∫ s

0

(1, r/s, . . . , (r/s)p)′B(r) dr, in DRp [κ, 1],

as T →∞, where the limit is almost surely (a.s.) continuous.

Lemma 3.1 plays a crucial role in the proofs of the main results, but it is also interesting

in its own right. Notice that X′
bTscεbTsc is the natural sufficient statistic when the errors

are i.i.d. normal. The lemma states that for random walk error terms with weak depen-

dent increments the correct scaling operator for the natural sufficient statistic is given by

T−3/2WbT ·c to obtain a non-degenerate distributional limit. The limit process is given by

the vector of weighted integrals of Brownian motion, η
∫ s

0
(r/s)kB(r) dr, k = 0, . . . , p, where

the integral is a Riemann integral. The factor η summarizes the impact of the correlation

of the increments.

Let us introduce the Hilbert matrix of dimension p + 1 given by

H = (1/(i + j − 1))i,j∈{1,...,p+1}.

It is known that its inverse, H−1, has entries

(H−1)i,j = (−1)i+j(i + j − 1)

(
p + i

p + 1− j

)(
p + j

p + 1− i

)(
i + j − 2

i− 1

)2

,

see Choi (1983).

We need the following simple result about sufficient conditions for uniform convergence

of the inverse of a sequence of invertible matrix-valued functions An(x), An : R → Rl×l,
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to the inverse of its limit A(x). Let ‖ · ‖ denote the Euclidean vector and matrix norm,

respectively.

Lemma 3.2. Suppose {A(x),An(x) : n ≥ 1}, is a sequence of k-dimensional matrix-valued

functions such that

sup
x
‖An(x)−A(x)‖2 = o(1).

Suppose

(3.1) 0 < inf
x

σ1(x) and sup
x

σk(x) < ∞,

where σ1(x) (σk(x)) denotes the smallest (largest) eigenvalue of A(x)∗A(x). Then

sup
x
‖A−1

n (x)−A−1(x)‖2 = o(1).

Theorem 3.1. Fix κ ∈ (0, 1). Assume (E). Then, under the null hypothesis H0,

ÊT
w→ E , in D[κ, 1],

as T →∞, where the a.s. continuous process E is given by

E(s) = η

{
B(s)− s−11′H−1

∫ s

0

(1, r/s, . . . , (r/s)p)′B(r) dr

}
,

for s ∈ [κ, 1].

This theorem provides an explicit formula for the limit process of ÊT . The limit process is

a linear function of Brownian motion B(s) and the limit process appearing in Lemma 3.1.

3.2. Sequentially updated Residual Process. Again, bTsc denotes the current time

point and bTrc stands for another time point, in most cases a previous one. Let us now

consider the two-parameter stochastic process

ÊbTrc(bTsc) = T−1/2ε̂bTrc(bTsc), r ∈ [κ, s], s ∈ [κ, 1],

where for p + 1 ≤ k ≤ t ≤ T we denote by ε̂k(t) the k-th residual associated to the

observation Yk, calculated using the data Y1, . . . , Yt. This means, having observed the nth

observation, all residuals are updated. We call ÊbTrc(bTsc) the sequentially updated residual
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process. Extend the definition by putting ÊbTrc(bTsc) = 0 if r > s or r, s ∈ [0, κ) to obtain

a D([0, 1]2)-valued process. Note that

ε̂bTrc(bTsc) = YbTrc − x′bTrcβ̂bTsc,

with

β̂bTsc = (X′
bTscXbTsc)

−1X′
bTscεbTsc(3.2)

εbTsc = (ε1, . . . , εbTsc)
′.

Theorem 3.2. Fix κ ∈ (0, 1) and assume (E). We have under H0

ÊbTrc(bTsc) w→ E(r, s),

in D([κ, 1]2; R), as T →∞, where the process E is given by

(3.3) E(r, s) = η

{
B(r)− v(r, s)s−1H−1

∫ s

0

v(u, s)B(u) du

}
with

(3.4) v(r, s) = (1, r/s, . . . , (r/s)p)′,

for κ ≤ r ≤ s ≤ 1.

Notice that the limit process for sequentially updated residuals has a similar structure

as for residuals without updating, but the vector functions appearing in the definition of

E(r, s) now depend on both r and s. Again, the influence of the dependence structure of

the error terms is summarized by the factor η.

Example 3.1. Explicit representations of the limit processes are now easy to obtain. Let

us consider dimensions p = 1 and p = 2, which are of special importance for applications.

(i) For p = 1 we have H−1 =

[
4 −6

−6 12

]
and

s−1H−1

[∫ s

0

B(r) dr,

∫ s

0

rB(r) dr

]′
=

(
4
s

∫ s

0
B(r) dr − 6

s2

∫ s

0
rB(r) dr

−6
s

∫ s

0
B(r) dr + 12

s2

∫ s

0
rB(r) dr

)
.
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Thus,

E(r, s) = η

{
B(r) +

(
6r

s2
− 4

s

)∫ s

0

B(u) du +

(
6

s2
− 12r

s3

)∫ s

0

uB(u) du

}
,

for r, s ∈ [κ, 1], r ≤ s.

(ii) If p = 2, H−1
∫ s

0
[1, r/s, r2/s2]′B(r) dr is given by

9
∫ s

0
B(r) dr − 36

s

∫ s

0
rB(r) dr + 30

s2

∫ s

0
r2B(r) dr

−36
∫ s

0
B(r) dr + 192

s

∫ s

0
rB(r) dr − 180

s2

∫ s

0
r2B(r) dr

30
∫ s

0
B(r) dr − 180

s

∫ s

0
rB(r) dr + 180

s2

∫ s

0
r2B(r) dr


We obtain

E(r, s) = η

{
B(s)−

(
9

s
− 36r

s2
+

30r2

s3

)∫ s

0

B(r) dr

−
(
−36

s2
+

192r

s3
− 180r2

s4

)∫ s

0

rB(r) dr

−
(

30

s3
− 180r

s4
+

180r2

s5

)∫ s

0

r2B(r) dr

}
,

for r, s ∈ [κ, 1], r ≤ s.

Remark 3.1. Based on these explicit formulas, simulating trajectories of the process E(r, s)

becomes a feasible task. Using Donsker’s theorem one may simulate trajectories of B(r) and

employ numerical integration to simulate the moment functions
∫ s

0
rkB(r) dr, s ∈ [κ, 1],

k ∈ N, appearing in the formulae.

3.3. Weighted Variance Ratio Process. We are now in a position to examine the

process associated to the sequence of control statistics {Ut}. For brevity of exposition we

present the results for the sequentially updated residuals. The required modifications when

using the sequential residuals without updating are straightforward.

Define the kernel-weighted variance ratio process

VT (s) =
bTsc−4∑bTsc

i=gT

(∑i
j=1 ε̂j(bTsc)

)2
K((i− bTsc)/h)

bTsc−2∑bTsc
j=gT

ε̂2
j(bTsc)

, s ∈ [0, 1].

Here and in the sequel we agree to put 0/0 = 0. gT denotes the time point where calculations

start. To ensure both that the residuals can be calculated and the sums appearing in the
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definition of VT (s) have a reasonable number of summands for all s ∈ [κ, 1], we assume

p + 1 ≤ gT < bTκc. A plausible choice is

gT = bTγc, for some γ ∈ (0, κ).

Then gT /T → γ > 0. More generally, let

(3.5) γ = lim
T→∞

gT /T ∈ [0, κ].

The stopping time RT can now be represented as

RT = T inf{s ∈ [κ, 1] : VT (s) ≤ c}.

We are now in a position to formulate the main result.

Theorem 3.3. Fix κ ∈ (0, 1) and assume (E). Under H0 we have

VT (s)
w→ V(s) =

s−2
∫ s

γ

(∫ r

0
E(s, t) dt

)2
K(ζ(r − s))dr∫ s

γ
E2(s, r) dr

, T →∞,

in the space D[κ, 1]. The limit process is continuous w.p. 1 and depends only on K, ζ, and

Brownian motion B, but not on the quantity η.

We discuss this theorem at the end of this section in greater detail.

3.4. KPSS (Variance Ratio) Residual Control Chart. The central limit theorem for

the stopping time RT of the KPSS residual control chart appears now as a corollary to

Theorem 3.3.

Corollary 3.1. For the stopping time RT we have under the conditions of Theorem 3.3

RT /T
d→ R = inf{s ∈ [κ, 1] : V(s) ≤ cR},

as T →∞.

As a consequence, the KPSS residual control chart can be designed to achieve a given

nominal significance level α ∈ (0, 1). Indeed, Corollary 3.1 implies that P0(RT ≤ T ) →
P0(R ≤ 1), as T →∞. Since

R ≤ 1 ⇔ inf
s∈[κ,1]

V(s) ≤ cR,



17

we select the control limit as

cR = F−1(1− α),

where F denotes the distribution function of infs∈[κ,1] V(s).

Remark 3.2. Having in mind practical applications it is worth discussing the following

issues.

(i) VT converges weakly to a stochastic process which does not depend on any nuisance

parameter. When a kernel K and the parameter ζ are selected, the process V is

known. This means, the asymptotic law of VT is distribution-free. As a consequence,

the asymptotic distribution of RT is also asymptotically distribution-free.

(ii) In practice, one can simulate trajectories from the limit process and calculate for

each trajectory the time point where the control limit cR is reached. In this way one

can simulate the asymptotic distribution of RT to determine a control limit cR such

that the resulting asymptotic type I error rate is α.

4. ASYMPTOTIC RESULTS FOR A CHANGE-POINT

MODEL

The results of the previous section allow to design monitoring procedures and to study the

behavior of the resulting procedure under the null hypothesis (in-control model) that the

underlying time series of observations follows a polynomial regression model with random

walk error terms under the stated regularity assumptions.

In this section we discuss the asymptotic behavior of the KPSS residual monitoring ap-

proach under a change-point model, where the first part of the time series behaves as a

random walk and the second part is stationary. We assume

(4.1) εt =

{ ∑t
j=0 uj, t = 0, . . . , bTϑc − 1,

ξT ut, t = bTϑc, . . . , T.

After the change-point q = bTϑc, which is given by the fixed but unknown parameter

ϑ ∈ (0, 1), the error terms change and are no longer a random walk. {ξT} is a sequence of

scale constants satisfying the condition

(4.2) ξT ∼ T β, for some β ≥ 0.
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We shall need a further constraint on β which will be discussed below. If β = 0, the error

process after the change, i.e., {εt : q ≤ t ≤ T} with q = bTϑc, is stationary. However, we

allow for positive values of β. In this case the error terms form a row-wise stationary array.

For simplicity of exposition we omit the dependence of εt on T in our notation.

Our asymptotic results require the following additional assumptions.

(C1) {ut} is a strictly stationary process with

lim
x→∞

P (|u1| > x)

x−γ
< ∞,

for some γ > 2 and satisfies the FCLT

(4.3) T−1/2
∑

i≤bTsc

ui
w→ ηB(s), T →∞,

for some constant 0 < η < ∞, where again B denotes standard Brownian motion

starting at 0.

(C2) The parameters α and β satisfy the relations 0 ≤ β < 1/2 and γ > 1
1/2−β

.

Note that the condition on the tail probabilities ensures that the E|ut|2 < ∞.

In the sequel we use the same notation for the quantities defined for the polynomial re-

gression model with error terms {εt} satisfying the change-point model above.

Let us again start with the residual process. We only discuss the FCLT for the process of

sequentially updated residuals, ÊbTrc(bTsc), κ ≤ r ≤ s ≤ 1, which is defined as before.

Theorem 4.1. Suppose the change-point model (4.1) holds. Additionally, assume that (E),

(C1), and (C2) are satisfied. Then, for any fixed κ ∈ (0, 1), the following assertions hold

true.

(i) We have in the space D([κ, 1]; Rp),

T−3/2WbTscX
′
bTscεbTsc

w→ η

∫ s

0

(1, r/s, . . . , (r/s)p)′B(r) dr1[κ,ϑ)(s),

as T →∞.

(ii) The sequentially updated LS residual process converges weakly,

ÊT
w→ Eϑ, in D([κ, 1]2; R),
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as T →∞, where the cadlag process E is given by

Eϑ(r, s) = η

{
B(s)− s−1v(r, s)H−1

∫ s

0

v(u, s)B(u) du

}
1[κ,ϑ)(s),

for κ ≤ r ≤ s ≤ 1.

The next result shows that under the aforementioned conditions the asymptotic distribu-

tion of the kernel-weighted variance ratio process is obtained by replacing formally E by

Eϑ in the limit process.

Theorem 4.2. Suppose the change-point model (4.1), assumption (E), (C1) and (C2) are

satisfied. Then, for any fixed κ ∈ (0, 1),

VT (s)
w→ Vϑ(s) =

s−2
∫ s

γ

(∫ r

0
Eϑ(s, t) dt

)2
K(ζ(r − s))dr∫ s

γ
E2

ϑ(s, r) dr
, T →∞,

in the space D[κ, 1]. The limit process depends only on K, ζ, and Brownian motion B, and

the change-point parameter ϑ.

Again, the central limit theorem for the KPSS residual control chart under the change-point

model appears as a corollary.

Corollary 4.1. Under the assumptions of Theorem 4.2 the stopping time RT satisfies

RT /T
d→ Rϑ = inf{s ∈ [κ, 1] : Vϑ(s) > cR},

as T →∞.

5. SIMULATIONS

We conducted a Monte Carlo study to investigate the properties of the KPSS monitoring

procedure when applied to residuals. Time series of length T = 500 according to model

Yt = β0 + β1 · t + (β1 + ∆)t1{q,q+1,... }(t) + εt,

where

εt =

{ ∑t
i=1 ηi, for t < q,∑q−1
i=1 ηi + ηt, for q ≤ t ≤ T ,
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with

ηt = ρηt−1 + ξt − βξt−1, ξt
i.i.d.∼ N(0, 1),

were simulated. Let us first discuss the construction of the innovation terms ηt. The AR

parameter was chosen as ρ = 0.3 and the MA parameter β from the set {−0.8, 0, 0.8}.
Thus, {ηt} is a correlated but weakly dependent sequence with mean 0. For time points

t < q the obervations Yt are given by a random walk with correlated increments ηi. At the

change-point q the process changes its behavior. The random walk stops and correlated

error terms ηt determine the behavior of εt.

Concerning the design of the monitoring procedures we used the Gaussian kernel, K(z) =

(2π)−1 exp(−z2/2), z ∈ R, and the bandwidths h ∈ {25, 50}, yielding ζ ∈ {20, 10}. The

deterministic component of the model is given by a linear trend whose slope, depending on

∆, may change at the change-point, too. If ∆ 6= 0, there is both a change in the error terms

and a change in the slope. That should make the detection of the change to stationarity of

the errors more difficult, since the residuals are estimated assuming a constant slope.

In a first step we examined for the setting ∆ = 0, h = 25, and T = 500, the relationship

between the control limit c and, firstly, the probability that the method gives a signal

(Figure 1) and, secondly, the conditional average run length (CARL) given that the method

gives a signal at all (Figure 2). Since monitoring stops latest at the 500th observation,

trajectories crossing the control limit later are not taken into account. The CARL is the

average run length corresponding to all trajectories yielding a signal until time 500. The

curves, which can also be used to choose the control limit, are quite similar for β ∈
{−0.8, 0}, but there is an effect for positive values of β. For the considered setting it

also becomes apparent that common type I error rates correspond to rather large CARL

values. On the other side, if the procedure is designed to yield CARL values of, say, 300,

the chart works on a type I error rate which is usually regarded as unacceptable from a

hypothesis testing viewpoint. However, note that this is partly due to the fact that we

studied monitoring with a time horizon. Without a time horizon the average run lengths

would be substantially higher yielding smaller control limits and, as a consequence, smaller

associated type I error rates.
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Figure 1. Empirical rejection rates as a function of 106 times the control limit c for

β = −0.8, β = 0, and β = 0.8 (dashed).
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Figure 2. Conditional average run length (CARL) as a function of 106 times the control

limit c for β = −0.8, β = 0, and β = 0.8 (dashed).

We also simulated the power of the KPSS variance ratio residual control chart when de-

signed to achieve a type I error rate of α = 0.05. The corresponding control limit was

obtained by simulating from the limit distributions. We examine the cases ∆ = 0 and

∆ = 0.5, where the latter case corresponds to a change to stationary errors term with an

additional change of the slope.

Table 1 provides the simulated rejection rates. It can be seen that the KPSS control chart

is quite robust with respect to the parameter β determining the degree of correlation for
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the increments of the random walk. That behavior is consistent with the theoretical and

empirical findings in Steland (2007a), where related monitoring procedures for time series

without trends have been studied in detail. The results show that an early change can be

detected quite well, but late changes are very hard to detect. However, this is, of course,

a problem for all methods, and for the statistical problem at hand, N = 500 is not a large

maximal number of observations. The results also indicate that the power is quite robust

with respect to additional changes in slope.

We may summarize that the KPSS control chart for residuals provides a quite reliable tool

to detect stationary errors in polynomial regression models.

Table 1. Empirical rejection rates of the KPSS control chart. The right columns

(∆ = 0.25) correspond to a change of the slope

∆ = 0 ∆ = 0.25

β β

change-point −0.8 0 0.8 −0.8 0 0.8

Results for h = 25

25 0.44 0.60 0.94 0.45 0.57 0.94

75 0.16 0.18 0.41 0.18 0.19 0.38

100 0.17 0.16 0.29 0.16 0.16 0.29

no-change 0.06 0.06 0.07 0.06 0.06 0.10

Results for h = 50

25 0.52 0.61 0.97 0.53 0.60 0.97

75 0.18 0.19 0.44 0.17 0.18 0.44

100 0.15 0.16 0.30 0.15 0.16 0.33

no-change 0.03 0.03 0.06 0.03 0.03 0.07
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APPENDIX A: PROOFS OF RESULTS FROM SECTION 3

A.1. Proof of Lemma 3.1

Note that for each s ∈ [κ, 1] we have

X′
bTscεbTsc =

bTsc∑
t=1

εt,

bTsc∑
t=1

tεt, . . . ,

bTsc∑
t=1

tpεt

′

yielding

T−3/2WbTscX
′
bTscεbTsc = T−3/2

bTsc∑
t=1

(t/bTsc)i−1εt


i=1,...,p+1

= T−1/2

(∫ s

0

(bTrc/bTsc)i−1εbTrc dr

)
i=1,...,p+1

(A.1)

=

(∫ s

0

(bTrc/bTsc)i−1T−1/2εbTrc dr

)
i=1,...,p+1

.

It is straightforward to check that

(A.2) sup
κ≤r≤s≤1

max
1≤i≤p

|(bTrc/bTsc)i − (r/s)i| = O(1/T ).

Hence,

sup
0≤r≤s≤1

max
1≤i≤p

∣∣∫ s

0

(bTrc/bTsc)i−1z(r) dr −
∫ s

0

(r/s)i−1z(r) dr
∣∣ = O(1/T ).

If we define the functional τ : (D[κ, 1], d) → (DRp [κ, 1], dp) by

τ(z)(s) =

(∫ s

0

(r/s)i−1z(r) dr

)
i=1,...,p+1

, s ∈ [κ, 1],

for any z ∈ D[κ, 1], we obtain

(A.3) T−3/2WbTscX
′
bTscεbTsc = τ(T−1/2εbT ·c)(s) + oP (1),
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the oP (1) being uniform in s ∈ [κ, 1]. It is easy to see that for any sequence {z, zn} ⊂
DRp [κ, 1] such that limn→∞ dp(zn, z) = 0, as n →∞, with z ∈ C[κ, 1], we have

lim
n→∞

dp(τ(zn), τ(z)) = 0.

Thus, the continuous mapping theorem in general separable metric spaces (Shorack and

Wellner (1986), Th. 4, p. 47, and Remark 2, p. 49) and (E) yield the result. 2

A.2. Proof of Lemma 3.2

Let cond2(A(x)) = σk(x)/σ1(x) denote the condition of A(x) w.r.t. the spectral vector

norm ‖ · ‖2. Let ε > 0. If ‖An(x) − A(x)‖2 < ε, the a-priori error estimate for linear

equations with disturbed coefficient matrices yields

‖a−1
nj (x)− a−1

j ‖2 ≤
cond2(A(x))

‖A(x)‖2 − εcond2(A(x))
ε‖aj(x)−1‖,

where a−1
nj (x) (a−1

j (x)) denotes the jth column of A−1
n (x) (A−1(x)). 2

A.3. Proof of Theorem 3.1

Recall the representations

β̂bTsc − β = (X′
bTscXbTsc)

−1X′
bTscεbTsc and ε̂bTsc = εbTsc − x′bTsc(β̂bTsc − β),

where β̂bTsc is defined in (3.2) yielding

ε̂bTsc = εbTsc − x′bTsc(X
′
bTscXbTsc)

−1X′
bTscεbTsc

= εbTsc − T 1/2x′bTscWbTsc(WbTscT
−1X′

bTscXbTscWbTsc)
−1T−3/2WbTscX

′
bTscεbTsc.

Since x′bTscWbTsc = (1, bTsc, . . . , bTscp)WbTsc = 1′ where 1 = (1, . . . , 1)′ ∈ Rp+1, we have

T−1/2ε̂bTsc = T−1/2εbTsc − 1′H̃−1
bTscT

−3/2WbTscX
′
bTscεbTsc

where

(A.4) H̃bTsc = WbTscT
−1X′

bTscXbTscWbTsc.

Obviously,

H̃bTsc =

bTsc
T

bTsc−(i+j−2)

bTsc∑
t=1

ti+j−2


i,j

.
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We will show that this matrix converges to sH uniformly in s ∈ [κ, 1]. Recall that

bTsc∑
t=1

ti+j−2 =
(bTsc+ 1)i+j−2

i + j − 1
+ O((bTsc+ 1)i+j−3).

Hence

bTsci+j−2

bTsc∑
t=1

ti+j−2 =
1

i + j − 1
+ O(1/(bTκc+ 1)),

yielding

(A.5) sup
s∈[κ,1]

|(H̃bTsc)ij − s/(i + j − 1)| = O(bTκc−1)

for i, j ∈ {1, . . . , p+1}. Recall the representation (A.1) and (A.3). Since sups∈[κ,1] τ(T−1/2εbT ·c)

converges weakly to the random variable

sup
s∈[κ,1]

τ(ηB)(s) = sup
s∈[κ,1]

(
η

∫ s

0

(r/s)i−1B(r) dr

)
i=1,...,p+1

,

we may conclude that

(A.6) sup
s∈[κ,1]

T−3/2W′
bTscX

′
bTscεbTsc = OP (1).

(A.5), (A.6), and Lemma 3.2 imply

ÊT (s) = T−1/2εbTsc − 1′s−1H−1T−3/2WbTscX
′
bTscεbTsc + OP (1/bTsc)

Using the result (A.3) we obtain

ÊT (s) = T−1/2εbTsc − 1′s−1H−1τ(T−1/2εbT ·c) + oP (1)

which shows that up to terms of order oP (1) the process ÊT is a continuous functional of

{T−1/2εbTsc : s ∈ [κ, 1]}. Consequently,

ÊT (s)
w→ η

{
B(s)− s−11′H−1

∫ s

0

(1, r/s, . . . , (r/s)p)′B(r) dr

}
,

in D[κ, 1], as T →∞. 2

A.4. Proof of Theorem 3.2

The proof is similar as the proof of Theorem 3.1. We have

ε̂bTrc(bTsc) = εbTrc − x′bTrcWbTsc(WbTscX
′
bTscXbTscWbTsc)

−1WbTscX
′
bTscεbTsc.
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Note that

x′bTrcWbTsc = (1, bTrc/bTsc, . . . , (bTrc/bTsc)p)′

and let v(r, s) = (1, r/s, . . . , (r/s)p)′. Due to (A.2) we have

sup
0≤r≤s≤1

‖x′bTrcWbTsc − v(r, s)‖ = O(1/T ).

Combining this fact with (A.3) yields

T−1/2ε̂bTrc(bTsc) =
εbTrc

T 1/2
− x′bTrcWbTscH̃

−1
bTscεbTsc

=
εbTrc(bTsc)

T 1/2
−
{
v(r, s)s−1H−1 + oP (1)

}{
τ(T−1/2εbT◦c)(s) + oP (1)

}
,

where the oP (1) terms are uniform in r, s ∈ [κ, 1]. Hence, uniformly in r, s ∈ [κ, 1],

T−1/2ε̂bTrc(bTsc) = ϕ(T−1/2εbT ·c)(r, s) + oP (1),

where the functional ϕ : D[κ, 1] → D([κ, 1]2; R) is given by

(A.7) ϕ(z)(r, s) = z(r)− s−1v(r, s)H−1

∫ s

0

(1, u/s, . . . , (u/s)p)′z(u) du, r, s ∈ [κ, 1],

for z ∈ D[κ, 1]. It is easy to see that for any sequence {z, zn} ⊂ D[κ, 1] with d(zn, z) → 0, as

n →∞, and z ∈ C[κ, 1], we have ‖ϕ(zn)− ϕ(z)‖∞ → 0, as n →∞. Hence, an application

of the continuous mapping theorem yields

T−1/2ε̂bTrc(bTsc) w→ ϕ(σB) = η

{
B(r)− s−1v(r, s)H−1

∫ s

0

(1, u/s, . . . , (u/s)p)′B(u) du

}
,

as T →∞. 2

A.5. Proof of Theorem 3.3

We formulate the proof such that the corresponding result for the change-point model

of Section 4 can be obtained by straightforward modifications. To simplify exposition we

assume γ = 0. Note that for any λ1, λ2 ∈ R the process

Wλ1,λ2(s) =
λ1

bTsc4
bTsc∑
i=1

( i∑
j=1

ε̂j(bTsc)
)2

K((i− bTsc)/h) +
λ2

bTsc2
bTsc∑
i=1

ε̂2
i (bTsc)
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can be written as

τλ1,λ2(Ê) = λ1

(
T

bTsc

)4 ∫ s

0

(∫ r

0

ÊbTzc(bTsc) dz

)2

K((bTrc − bTsc)/h) dr

+ λ2

(
T

bTsc

)2 ∫ s

0

Ê2
bTrc(bTsc) dr,

where τλ1,λ2 maps elements of D([0, 1]2) to elements of D[0, 1]. Let us show continuity

of τλ1,λ2 w.r.t. the supnorm. W.l.o.g. we may assume ‖K‖∞ = 1. Using the inequality

|a2 − b2| ≤ (|a|+ |b|)|a− b| for real numbers a, b we can bound |τλ1,λ2(z1)− τλ1,λ2(z2)| by

[λ1(T/bTsc)4‖z1‖∞ + λ2(T/bTsc)2(‖z1‖∞ + ‖z2‖∞)]‖z1 − z2‖∞ = O(‖z1 − z2‖∞).

Hence, for 0 ≤ s1 ≤ · · · ≤ sL ≤ 1, L ∈ N, any associated linear combination
∑L

k=1 ρkWλ1,λ2(sk),

ρ1, . . . , ρL ∈ R, of the coordinates of the random vectors (Wλ1,λ2(s1), . . . ,Wλ1,λ2(sL)), con-

verges in distribution to
∑L

k=1 ρkτλ1,λ2(E)(sk), since ÊT
w→ E , T → ∞, by Theorem 3.2.

This verifies convergence of the finite-dimensional distributions of the (D[κ, 1])2-valued

stochastic process (ZT1, ZT2), where

ZT1(s) = bTsc−4

bTsc∑
i=1

( i∑
j=1

ε̂j(bTsc)
)2

K((i− bTsc)/h), ZT2(s) = bTsc−2

bTsc∑
i=1

ε̂i(bTsc)

for s ∈ [κ, 1]. Tightness w.r.t. the product topology is a consequence of Prohorov’s theorem,

since both coordinate processes converge weakly. Thus, (ZT1, ZT2)
w→ (Z1, Z2), T →∞, in

(D[κ, 1])2, where

Z1(s) = s−4

∫ s

0

(∫ r

0

E(z, s) dz
)2

K(ζ(s− r)) dr, Z2(s) = s−2

∫ s

0

E2(r, s) dr,

for s ∈ [κ, 1]. Now a straightforward argument implies that the ratio, VT , converges weakly,

as T →∞. Finally, by Lipschitz continuity of the kernel K the limit process V is continuous

w.p. 1. 2

A.6. Proof of Corollary 3.1

The result is shown using similar arguments as in Steland (2007b, Corollary 2.1.) 2
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APPENDIX B: PROOFS OF RESULTS FROM SECTION 4

By virtue of the method of proof used in the previous section, we are in a position to extend

the results for the kernel weighted variance ratio process and its associated stopping time

to the change-point model of Section 3, if we have a FCLT for the process of sequentially

updated residuals. Thus we provide a detailed proof of Theorem 4.1 and indicate the

required modifications to prove Theorem 4.2.

B.1. Proof of Theorem 4.1

Under the change-point model we have

{T−1/2εbTsc : κ ≤ s < ϑ} w→ {ηB(s) : κ ≤ s < ϑ},

as T →∞. Consider the process T−1/2εbTsc for ϑ ≤ s ≤ 1. First note that

T−1/2εbTsc ≤ sup
z∈[κ,1]

|T 1/2εbTzc|.

Let δ > 0. By assumptions (C1) and (C2)

P

(
sup

z∈[ϑ,1]

|T−1/2εbTzc| > δ

)
= P

(
max

t=bTϑc,...,T
|ut| > T 1/2δ/ξT

)
≤ (T − bTϑc+ 1)P (|u1| > T 1/2δ/ξT )

= O(T 1−γ(1/2−β))

= oP (1).

if β < 1/2 and γ > (1/2−β)−1. Again using the Skorohod-Dudley-Wichura representation

theorem we may assume that

sup
s∈[κ,ϑ]

|T−1/2εbTsc − ηB(s)| a.s.→ 0,

and

sup
s∈[κ,ϑ]

|T−1/2εbTsc|
a.s.→ 0,

as T → ∞. This implies a.s. convergence in the Skorohod metric to the cadlag process

B1[κ,ϑ), i.e.,

d(T−1/2εbT ·c, ηB1[κ,ϑ))
a.s.→ 0,
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as T →∞, which in turn yields weak convergence,

T−1/2εbTsc
w→ ηB(s)1[κ,ϑ)(s),

in D[κ, 1], as T → ∞. Combining this fact with (A.3), the continuity of the functional τ

(Jacod and Shiryaev (2003), VI, Proposition 1.22, p. 329) yields

T−3/2WbTscX
′
bTscεbTsc

w→ η

∫ s

0

(1, u/s, . . . , (u/s)p)′B(r) dr1[κ,ϑ)(s),

as T →∞. The same arguments as in the proof of Theorem 3.2 show that

ÊbTrc(bTsc) = T−1/2ε̂bTrc(bTsc) = ϕ(T−1/2εbT ·c)(r, s) + oP (1),

as T →∞, where the functional ϕ is defined in (A.7). We have by linearity

ϕ(T−1/2εbT ·c)(r, s) =

[
T−1/2εbTsc − s−1v(r, s)H−1

∫ s

0

v(u, s)T−1/2εbTuc du

]
=

[
ηB(s)− s−1v(r, s)H−1

∫ s

0

v(u, s)ηB(u) du

]
1[κ,ϑ)(s)

+ RT1(s)−RT2(r, s)

= ϕ(ηB1[κ,ϑ))(r, s) + R1(s) + R2(r, s),

where the remainder terms are given by

RT1(s) = T−1/2εbTsc − ηB(s)1[κ,ϑ)(s),

RT2(r, s) = s−1v(r, s)H−1

∫ s

0

v(u, s)[T−1/2εbTuc − ηB(u)]1[κ,ϑ)(s) du.

Clearly, sups∈[κ,ϑ) |RT1(s)| → 0, as T → ∞, a.s. To estimate RT2, denote the maximum

vector norm and the induced matrix norm by ‖ ◦ ‖∞ and observe that∥∥∥∥∫ s

0

v(u, s)[T−1/2εbTuc − ηB(u)]1[κ,ϑ)(s) du

∥∥∥∥
∞

≤
∫ s

0

‖v‖∞ sup
z∈[κ,ϑ)

|T−1/2εbTzc − ηB(z)|1[κ,ϑ)(s) du

≤ ‖v‖∞ϑ sup
z∈[κ,ϑ)

|T−1/2εbTzc − ηB(z)| a.s.→ 0,

where ‖v‖∞ = supr,s∈[κ,ϑ) ‖v(r, s)‖∞ < ∞. Hence,

sup
s∈[κ,ϑ)

|RT2(r, s)| ≤ κ−1‖v‖2
∞‖H−1‖∞ϑ sup

z∈[κ,ϑ]

|T−1/2εbTzc − ηB(z)| du
a.s.→ 0,
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as T →∞. Consequently,

ϕ(T−1/2εbT ·c)(r, s)
a.s.→ ϕ(ηB1[κ,ϑ)),

as T →∞, which implies via

d(ϕ(εbT ·c), ϕ(ηB1[κ,ϑ)))
a.s.→ 0,

as T →∞, weak convergence which completes the proof. 2

B.2. Proof of Theorem 4.2

To proof goes along the lines of the proof of Theorem 3.3. Notice that now the linear

combinations
∑L

k=1 ρkWλ1,λ2(sk) converge weakly in distribution to
∑L

k=1 ρkτλ1,λ2(Eϑ)(sk).

2
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17: 21-86.

[3] Beibel, M. (1996). A Note on Ritov’s Bayes Approach to the Minimax Property of the CUSUM

Procedure, Annals of Statistics 24: 1804-1812.

[4] Bickel, P. J. and Wichura, M. J. (1971). Convergence Criteria for Multiparameter Stochastic Processes

and Some Applications, Annals of Statistics 42: 1656-1670.

[5] Birnbaum, Z. W. and Saunders, S. C. (1969). A New Family of Life Distributions. Journal of Applied

Probability 6: 319-327.

[6] Billingsley, P. (1999). Convergence of Probability Measures, New York: Wiley.

[7] Breitung, J. (2002). Nonparametric Tests for Unit Roots and Cointegration, Journal of Econometrics

108: 343-363.

[8] Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods, 2nd edition, New York:

Springer.

[9] Brodsky, B. E. and Darkhovsky, B. S. (2000). Non-Parametric Statistical Diagnosis: Problems and

Methods, Dordrecht: Kluwer.

[10] Brown, R. L., Durbin, J., and Evans, J. M. (1975). Techniques for Testing Constancy of Regression

Relationships over Time, Journal of Royal Statistical Society, Series B 37: 149-163.

[11] Choi, M. D. (1983). Tricks and Treats with the Hilbert Matrix, American Mathematician Monthly 90:

301-312.



31

[12] Durham, S. D. and Padgett, W. J. (1997). A Cumulative Damage Model for System Failure with

Application to Carbon Fibers and Composites, Technometrics 39: 34-44.
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