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Abstract: This paper discusses cluster analysis in a probabilistic and infer-
ential framework as opposed to more exploratory, heuristic or algorithmic
approaches. It presents a broad survey on probabilistic models for partition-
type, hierarchical and tree-like clustering structures and points to the rel-
evant literature. It is shown how suitable clustering criteria or grouping
methods may be derived from these models in the case of vector-valued data,
dissimilarity matrices and similarity relations. In particular, we discuss hy-
pothesis testing for homogeneity or for a grouping structure, the asymptotic
distribution of test statistics, the use of random graph theory and combi-
natorial methods for simulating random dendrograms. Our presentation of
hierarchies includes, e.g., Markovian branching processes and phylogenetic
inference based on molecular sequence data.

Keywords: Probabilistic cluster analysis; Partition-type clustering; Hierar-
chical clustering models; Testing for a clustering structure; Phylogenetic in-
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1. Cluster analysis: Data types and classification struc-
tures

Cluster analysis is designed to detect hidden ’groups’ or ’clusters’ in a set of
objects which are described by numerical, linguistic or structural data such
that the members of each cluster behave similarly to each other (with re-
spect to the given data) and groups are hopefully well separated. Clustering
techniques are often considered as a part of exploratory statistics, in partic-
ular if the used clustering algorithms are ’model-free’ or only heuristically
motivated. In contrast, this paper emphasizes an inferential approach and
presents a brief survey on clustering and clustering-related methods which
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are based on probabilistic models. It shows how suitable clustering strate-
gies can be derived from these models by tools from classical statistics, and
analyzed in a probabilistic way. Such an approach clarifies the conditions un-
der which a proposed clustering method can be successful, and characterizes
its performance. Our presentation includes some formal test procedures for
testing the existence of a ’clustering structure’ as well as models for a ’purely
random (homogeneous) data constellation’. Whilst this survey can point to
many topics only very briefly, a more detailed account and additional ref-
erences may be found in Bock (1974, 1985, 1989a, 1995), Perruchet (1983),
Jain & Dubes (1988), Godehardt (1990) and Gordon (1994a, 1994b).

We consider a set O = {1, ..., n} of n objects k = 1, ..., n described by data
which are considered, in a probabilistic framework, as realizations of random
variables. Then any inherent clustering (or non-clustering) structure for the
objects is characterized by the probability distribution of these variables. We
will consider the following data types:

a) n feature vectors x1, ..., xn, each with p metric or qualitative com-
ponents, describing the observed properties of the n objects. These
data are realizations of n p−dimensional independent random vectors
X1, ..., Xn;

b) a dissimilarity matrix (dkl)n×n with entries dkl characterizing the dis-
similarity of the objects k, l ∈ O (with 0 = dkk ≤ dkl = dlk for all k, l;
they are realizations of n(n − 1)/2 random dissimilarities Dkl, k 6= l
(with Dkk ≡ 0 for all k);

c) a binary similarity relation (skl)n×n with skl = 1 resp. = 0 if the objects
k, l are considered to be ’similar’ or not (with skk = 1 for all k), with
corresponding random Bernoulli variables Skl. These data are equiva-
lent to a similarity graph G with n vertices (objects) and a link (edge)
between two different vertices k, l ∈ O whenever skl = 1.

In this paper we will consider two basic types of classification structures:

(1) Partitions C = {C1, ..., Cm} of O with a suitable (or specified) number
m of non-empty disjoint classes C1, C2, ... ⊆ O;

(2) Hierarchies H = (A,B, ...) with nested classes A,B, ... ⊆ O (including
all singletons as well as O) such that A∩B ∈ {A,B, ∅} for all A,B ∈ H,
and dendrograms (H, h) where h ≥ 0 is an isotone heterogeneity index
defined on the classes of H.

2

 
 

Published in: Computational Statistics and Data Analysis 23 (1996) 5-28



Thus we exclude here overlapping classifications (coverings) of O and fuzzy
clustering concepts.

2. Partition-type models for data vectors X1, ...,Xn

If the data are n random feature vectors X1, ..., Xn a probabilistic clustering
model has been defined mainly in one of the five following ways (where we
must distinguish models which incorporate explicitly an m-partition from
those which describe a ’clustering tendency’ only).

2.1 The fixed-classification model:

This model assumes, for a fixed number m, an unknown m-partition C =
(C1, ..., Cm) of O, m unknown class-specific parameters ϑ1, ..., ϑm compiled
in the vector θ = (ϑ1, ..., ϑm) and a known parametric density family f(·;ϑ)
such that

Xk ∼ f(·;ϑi) for all k ∈ Ci, i = 1, ...,m. (2.1)

If m is known we may estimate the two ’parameters’ C and θ by the maximum
likelihood method which leads to the following clustering criterion (using the
negative log likelihood):

g(C, θ) :=
m

∑

i=1

∑

k∈Ci

[−logf(xk;ϑi)] → minC,θ. (2.2)

Minimizing with respect to C and θ in turn leads to the well-known k−means
clustering algorithm which yields a sequence C0, θ0, C1, θ1,... of successively
improving partitions and parameter values (iterative minimum-distance clus-
tering, nuées dynamiques; Bock 1974, Schroeder 1976). Other optimiza-
tion methods (combinatorial, exchange, dynamic programming etc.) are de-
scribed in Bock (1974), Späth (1985), Hansen (1994).

Fixed classification models provide a very flexible tool for clustering since
suitable specifications of the density f (normal, double exponential etc.), of
the class-specific parameters ϑi (central points or hyperplanes, variances, in-
teractions etc.) and the inclusion of parameter constraints can cope with
special needs of practice and yield various interesting clustering methods:

• the classical cases which assume spherical or ellipsoidal normal distribu-
tion clusters with class-specific centers and lead, e.g., to the well-known
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SSQ (trace, variance) criterion g(C, θ) =
∑m

i=1

∑

k∈Ci
||xk−ϑi||

2 and the
determinantal criterion (Bock 1974, Späth 1985);

• principal component clustering which assumes class-specific hyperplanes
as in Bock (1969, 1974, 1987), possibly even with common and class-
specific dimensions (Bock 1987);

• regression clustering based on class-specific regression hyperplanes planes
for data (Xk, zk) comprizing an explanatory vector zk (Bock 1969,
1987);

• projection pursuit clustering where all class centers ϑi ∈ Rp are located
on an unknown low-dimensional hyperplane H of Rp (Bock 1987)

• minimum-volume clustering where classes correspond to convex sets in
Rp (Rasson et al. 1988, Hardy 1994);

• entropy clustering for discrete data and assuming loglinear models for
the Xk with class-specific interactions (Bock 1986, 1993, Céleux & Go-
vaert 1991);

• binary regression clustering (e.g. for credit scoring) yielding entropy
criteria again (Bock 1986, 1993).

As an alternative to maximum likelihood methods several authors have pro-
posed a Bayesian approach which leads (under suitable prior assumptions
and loss functions) to the optimization of a posterior risk (posterior prob-
ability) for the unknown m-partition C (see, e.g., Bock 1972, 1974, Binder
1978 and, for segmented prediction, Bernardo 1994).

2.2 The mixture model

The usual marginal approach assumes the same mixture density f(x) =
∑m

i=1 πif(x;ϑi) for all vectors X1, ..., Xn with the purpose to estimate the
unknown parameters πi and ϑi: This model involves no explicit clustering. –
However, when considering, additionally, the random binary class indicator
vectors Ik ∈ {0, 1}m ∼Mult(1;π1, ..., πm) which define a random (unobserv-
able) partition C of O, the n i.i.d. pairs (Ik, Xk) yield a minus log likelihood
function l(π, θ; I1, ..., In, x1, ..., xn) which can be minimized with respect to
π, θ and the missing values I1, ..., In (equivalently: with respect to the in-
duced partition C where the number of classes is bounded bym). Substituting
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the m.l. estimates π̂i = |Ci|/n into l(·) leads to the partition-type clustering
criterion:

ĝ(C, θ) =
m

∑

i=1

∑

k∈Ci

[− log f(xk;ϑi)] − n ·
m

∑

i=1

(|Ci|/n) · log(|Ci|/n) → minC,θ(2.3)

which adds an entropy term to the criterion (2.2) (Anderson 1985, Bock
1995). Mixtures are thoroughly investigated by Titterington, Smith & Makov
(1985) and Redner & Walker (1984), the relationship to clustering and the
determination of the class number m is fully discussed, e.g., in Windham
(1987), McLachlan & Basford (1988), Windham & Cutler (1992, 1994), Fur-
mann & Lindsay (1994), Roeder (1994), Bozdogan (1994) and Bock (1995).

2.3 Multimodality and high-density (density-contour) clusters

Any density f(x) is characterized by its level sets B(c) := {x ∈ Rp|f(x) ≥ c}
for all c > 0. ’High-density clusters’ at a fixed level c are defined as the
connected components B1(c), B2(c), ... of B(c) which characterize, for a mul-
timodal density f , the domains of point aggregations when sampling from f
(Bock 1974). Starting from n data points x1, ..., xn, corresponding estimates
B̂i(c) can be obtained from a (non-parametric or kernel-type) density esti-
mate f̂ of f from which suitable object clusters Ĉi(c) := B̂i(c) ∩ {x1, ..., xn}
are easily constructed. There exist many modifications, e.g., using k-nearest
neighbour distances, and methods based on discretized (grey-level) density
values which use morphological operations such as the dilatation and erosion
of binary sets or the thinning and thickening of functions (well-known from
pattern recognition and image analysis; see Postaire 1993, Sbihi & Postaire
1994).

The clustering tendency provided by f respectively the induced distribution
Pf can be characterized by the probability excess mass function given by

E(c) :=
∫

[f(x) − c]+ dx =
m

∑

i=1

∫

Bi(c)
[f(x) − c] dx

∗
= sup

(B1,...,Bm)

m
∑

i=1

[(Pf (Bi) − c · volp(Bi)] =: E(m)(c), (2.4)

i.e. the difference between the probability masses contained in the Bi(c) un-
der Pf and a uniform distribution, respectively. The equality

∗
= holds for
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any m-modal density f and the supremum is taken over all sets of m disjoint
connected subsets Bi of Rp (Müller & Sawitzki 1991, Sawitzki 1994).

2.4 Mode clusters

A closely related model starts from the idea that the local maxima ξ1, ξ2, ... of
a (smooth) multimodal density f can be considered as the kernels of suitable
cluster regions D1, D2, ... in R

p where Di is the set of all x ∈ Rp which attain,
after some hill-climbing relocation procedure (to be specified), the i-th mode
ξi. Point clusters for a sample x1, ..., xn are usually built up by a similar
relocating process using a (smooth) density estimate f̂ .

2.5 Clustered point processes

Spatial statistics provides a series of models for clustered point constella-
tions X1, X2, ... in a (often finite) domain G ⊂ Rp. Typical examples include
the non-homogeneous Poisson process with a (multimodal) intensity func-
tion λ(x) and the Neyman-Scott process where parent points Y1, Y2, ... are
randomly located in G and a random (Poisson distributed) number Ni of
daughter points Xi1, Xi2, ..., XiNi

is located near to Yi (e.g., with a Gaussian
distribution Np(Yi, σ

2Ip) or with a uniform distribution in the ball K(Yi, r)
for some radius r > 0). Statistical analysis concerns primarily the estimation
of the incorporated parameters (λ, σ2, r etc.; see Ripley 1981, Cressie 1991)
and insofar the clustering tendency only (instead of locating single clusters).

3. Partition-type probability models for dissimilarity
data

Even if many clustering methods start from an n×n matrix (dkl) of pairwise
dissimilarities between objects, elaborated clustering models for this case are
rarely found in the literature. The following fixed-classification approach has
been proposed by Bock (1989b): We start with the idea that in a homoge-

neous or unstructured population all
(

n
2

)

random nonnegative dissimilarities

D̃kl are independently distributed, all with the same (standardized) distri-
bution, e.g., an exponential distribution exp(1). The clustering model states
that, for a fixed unknown m-partition C = (C1, ..., Cm) of the objects, the
observed dissimilarities Dkl with k < l are distributed according to:

Dkl ∼ ϑij · D̃kl for all k ∈ Ci, l ∈ Cj (3.1)
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where the positive scaling factors ϑij describe the reduction or increase of
the standard dissimilarities in and between the classes, respectively (typi-
cally with side constraints ϑii ≤ ϑij for all i, j). They must be estimated,
together with C, from the observed data (dkl)n×n, e.g. by maximizing the
likelihood. The independence assumption must be weakened for many prac-
tical applications.

Another model (Mountford 1970) considers similarities Skl instead of dis-
similarities and proposes a normal distribution variance component model
of the type Skl = µij + Vi + Vj + Ukl for all k ∈ Ci, j ∈ Cj where µij is
the ’typical’ dissimilarity between the classes Ci, Cj, V1, ..., Vm ∼ N(0, σ2)
are class-specific deviations, and Ukl ∼ N(0, τ 2) denote random errors (all
variables being independent). However, since Mountford considered the par-
tition C to be known, he had no real clustering situation.

4. Partition-type clustering models for random similar-
ity

relations and random graphs

A random similarity relation S = (Skl) on O (with P (Skk = 1) = 1) tells us
if two objects k, l ∈ O are considered to be ’similar’ (Skl = 1, a hit) or not
(Skl = 0, a failure). S is equivalent to a random graph G with n vertices and
a random number N =

∑ ∑

k<l Skl of links kl with Skl = 1 along the lines
described in section 1.c. Therefore we may consider, occasionally, random
graphs as well. – We mention three clustering models here:

4.1 The fixed-classification model

This model postulates the existence of an unknownm-partition C = (C1, ..., Cm)
of O and of a symmetric matrix p = (pij)m×m of unknown class-specific link-

ing probabilities pij (typically with pii ≥ pij for all i, j) such that all
(

n
2

)

Bernoulli link indicators Skl with k < l are independently distributed with:

P (Skl = 1) = pij for all k ∈ Ci, l ∈ Cj. (4.1)

Applying the maximum likelihood method for estimating the unknown C and
(pij) amounts to minimizing the clustering criterion:

g(C, p) := −
∑

1≤i≤j≤m

[Nij log pij + (nij −Nij) log(1 − pij)] → min
C,p

(4.2)
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where Nij is the number of pairs k ∈ Ci, l ∈ Cj k < l with a link Skl = 1, and

nij = |Ci| · |Cj| resp. nii =
(

|Ci|
2

)

denotes the number of different pairs {k, l}

with k ∈ Ci, l ∈ Cj, k < l. Obviously p̂ij := Nij/nij is the m.l. estimate for
pij if the side constraints are fulfilled or neglected.

4.2 An error perturbation model

This model describes the unknown partition C by an equivalence relation
ρ = (ρkl)n×n with ρkl = 1 if and only if the objects k, l ∈ O belong to the
same class of C. The model assumes that the indicators ρkl with k < l are
randomly perturbed in the way that ρkl = 1 is replaced by 0 with probability
α, and ρkl = 0 is replaced by 1 with probability β, all perturbations being
independent and symmetry maintained. This yields an observable random
symmetric reflexive relation S = (Skl)n×n with

(

n
2

)

independent entries and

P (Skl = 1) = ρkl(1 − α) + (1 − ρkl)β for k < l. Suitable clustering methods
have to estimate the unknown parameters α, β as well as the unknown par-
tition C (including m) from the observed matrix S (Frank 1978). Note that
this is a special case of the previous model 4.2 with pii = 1 − α and pij = β
for i 6= j.

4.3 Markov graphs for similarity relations:

Frank & Strauss (1986) have proposed a model for a random graph G, i.e. a

joint distribution for the
(

n
2

)

link indicators Skl, which allows for some depen-
dence between neighbouring links Skl, Slt sharing a common object l. More
specifically, it is assumed that for each pair of object pairs {k, l}, {r, t} the
link indicators Skl, Srt are conditionally independent given all other indica-
tors Suv, provided that {k, l, r, t} comprises 4 different objects (this excludes
overlapping pairs {k, l} and {l, t} where conditional dependence may exist).
It can be shown that the resulting marginal distribution of S is equivalent
to a Markov field on a related graph Γ (whose vertices are the

(

n
2

)

pairs

of objects), and a classical theorem of Hammersley and Clifford states that
the joint distribution of the Skl has, under some homogeneity and symmetry
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conditions, the form:

P (S = s) = const. · exp{α ·N3(G) +
n−1
∑

t=1

βt ·Mt(G)}. (4.3)

where G is the graph corresponding to the given realization s = (skl) of S,
N3(G) is the number of triads (complete subsets of size 3) in G, and Mt(G)
the number of t−stars (a k ∈ O linked with exactly t other objects) in G;
α > 0 and βt ∈ R are unknown model parameters for transitivity and clus-
tering, respectively. The estimation of these parameters requires extensive
analytical and computational efforts.

Similar models have been proposed in network analysis, e.g., by Holland &
Leinhardt (1981), Bollobás (1985), Fienberg, Meyer & Wasserman (1985)
and Wasserman & Anderson (1987). Banks & Carley (1994) give a survey
and propose a probability model of the type P (S = s) = c(σ)·exp{σ ·d(s, s∗)}
for all s where s∗ describes a ’central’ similarity graph (e.g., implied by a par-
tition C), d(s, s̃) is a mesure of the deviation between two similarity relations
s, s̃, and the dispersion parameter σ influences the normalizing constant c(σ).

5. Testing for homogeneity and for a clustering struc-
ture

Most clustering algorithms, including those which minimize a clustering cri-
terion, provide the user always with a classification of objects – whether or
not the data exhibit, in reality, a clear clustering structure and even if the
calculated classes show weak homogeneity or class separation properties. In
order to prevent classificationists from pitfalls and wrong conclusions, it is
therefore strongly recommended:

(a) to provide, before applying a clustering algorithm, some evidence that
the data exhibit a

clustering structure at all and are not, in the contrary, just a sample from
a homogeneous

universe;

(b) to assess, after having performed a cluster algorithm, the significance of
the calculated

classification or clusters such that finally only those classifications (clus-
ters) are retained
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which are more marked than those resulting from ’random’ data sets.

Problems of this type, together with the determination of a suitable number
m of classes, concern a major part of recent theoretical and computational
investigations in cluster analysis. Passing over a wealth of exploratory or
interactive graphical tools, we will survey here a range of probability-based
inferential methods (see also Bock 1985, 1989a, 1995, Gordon 1994a, 1994b).

5.1 Nearest-neighbour methods for testing for homogeneity

Problems of type (a) are usually addressed by preliminary tests for homo-
geneity. The situation of ’homogenity’ has been formalized either

– in the sense of a uniform distribution HG of the data vectors X1, ..., Xn in
a finite domain
G of the space Rp, or

– in the sense of Hunimod, i.e. assuming an arbitrary unimodal density f for
the Xk.

Test statistics for HG are provided, e.g., by nearest neighbour distances
Dk := minl 6=k||Xl − Xk|| between the n data points, the largest nearest-
neigbour distance T := maxk{Dk} (possibly considering the boundary of G
as well by using T ∗ := maxk{min{Dk, ||Xk − δG||}}), the radius R of the
largest ball inside G without any data point in its interior, and modifications
using the t−largest or s−smallest values. It appears that, for n → ∞, the
asymptotic distributions of T, T ∗ and R are all a rescaled Gumbel’s extreme
value distribution with distribution function H(t) = exp(e−t) such that per-
centage points can be easily approximated (at least for a known volume |G|).
An asymptotic Smirnov type distribution results for the cited (and several
weighted) modifications (see Henze 1982, Dette & Henze 1988, Janson 1987).

5.2 Testing for multimodality
A test for Hunimod versus bimodality H2 or, more generally, for multimodality
H≤m with at most m modes versus H>m has been formulated by Silverman

(1981; for p = 1) in terms of a kernel density estimator f̂ : Hunimod (respec-
tively H≤m is rejected if the smallest critical window width hcrit for which f̂
has 1 mode (respectively m modes) is too large. Percentage points are are ob-
tained by bootstrap methods. Müller & Sawitzki (1991) and Sawitzki (1994)
use an empirical version E(m)

n (c) of their excess mass statistics E(m)(c) (see
(2.4)) and reject the hypothesis of m-modality H≤m if, e.g., the maximum
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(w.r. to c > 0) difference Dn,m(c) := E(m+1)
n (c) − E(m)

n (c) is too large. In
the unidimensional case p = 1 the asymptotic distribution of maxcDn,m(c) is
described by a Brownian bridge, and for m = 1 the resulting test is basically
equivalent to the DIP test proposed by Hartigan & Hartigan (1985).

Multivariate extensions of this latter test have been developed by Hartigan
(1988; SPAN test), Hartigan & Mohanty (1992; RUNT test) and Rozál &
Hartigan (1994; MAP test). They are all based on the edge lengths in the
minimum spanning tree (MST) obtained for the Euclidean distances of the n
data points x1, ..., xn and insofar closely related to single linkage clustering.
In particular, the largest edge length Mn (i.e. the level of the highest split in
the single linkage dendrogram) has been investigated by Steele (1988), Steele
& Tierney (1988) and Tabakis (1994). The latter paper derives asymptotic
probability bounds for Mn which behaves as [(log n)/n]1/p under a smooth,
possibly multimodal density f (note that Mn ≥ T = maxk{Dk}). The em-
pirical distribution of the n−1 edge lengths in the MST has been considered
by Pociecha & Sokolowski (1989) under multivariate normal and uniform
distributions for the Xk.

5.3 The max-F test and its generalizations

Another range of tests concentrates on the previously mentioned problem (b)
and checks the appropriateness of a calculated optimum m-partition C∗ by
comparing the maximally (or minimally) attained clustering criterion value
k(C∗) = maxC k(C) with a suitable percentage point c = c(α). For instance,
the max-F test uses the ratio of the sum of squares between and in the classes
of C, i.e. the maximum value k∗mn of:

kmn(C) = (
m

∑

i=1

|Ci| · ||x̄Ci
− x̄||2)/(

m
∑

i=1

∑

k∈Ci

||xk − x̄Ci
||2) (5.1)

such that C∗ will be the m-partition that minimizes the SSQ or variance
criterion in the denominator. The asymptotic behaviour and distribution of
k∗mn and of the optimum class centers xC∗

i
for n→ ∞ has been theoretically

investigated, e.g., by Bryant & Williamson (1978), Hartigan (1978; p = 1),
Pollard (1982) and Bock (1985; p ≥ 1); these asymptotics invoke an optimum
m-partition B∗ = (B∗

1 , ..., B
∗
m) of the Euclidean space Rp using a continuous

version of the SSQ criterion. Whilst these theoretical results have been ex-
tended to generalized criteria as well (e.g., using generalized metrics instead
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of the Euclidean one), finite-sample distributions for k∗mn and related test
statistics (including the determinantal and Wilks type criteria; Lee 1979)
under ’homogeneity’ must be computed by simulations. A similar remark
applies to the investigation of the power properties of these (and most) clus-
tering tests under interesting clustering alternatives, a field which remains
largely unexplored as yet.

5.4 Average similarities and U-statistics

It can be expected from an intuitive point of view that the average of all
(

n
2

)

similarities skl (dissimilarities dkl) is larger (smaller) for a homogeneous
population of the type Hunimod than for a clustered one. Therefore, average
similarity or dissimilarity statistics have been occasionally proposed when
testing for a clustering tendency. The investigation of such test statistics
proceeds leads typically to the consideration of U-statistics (Bock 1977, 1985,
Silverman & Brown 1978, Bhattacharya & Ghosh 1992). Related proposals
concerning a single cluster C ∈ O can be found in Gordon (1994a, 1994b) who
uses, for pairs {k, l}, {s, t} of object pairs, binary distance comparison indi-
cators Ukl,st = 0, 1/2, 1 for dkl <,=, > dst in order to define local and global
validation indices for a given cluster C by UL :=

∑

k∈C

∑

l∈C−{k}

∑

t∈C Ukl,kt

and UG :=
∑

k∈C,l∈C

∑

s∈C,l∈C Ukl,st, respectively. These indices are used as
test statistics for validating a constructed cluster C of objects (with signifi-
cance points obtained by simulations).

5.5 Random graphs and multigraphs

In the case of a dissimilarity matrix (dkl) a test for ’randomness’ is often
based on graph-theoretical concepts by considering, for a fixed, but arbitrary
threshold d ≥ 0, the threshold graph G(d) with n vertices and a link kl for
all pairs k, l ∈ O, k 6= l, for which dkl ≤ d. G(d) has exactly N edges if
d = d(N), the N -smallest distance dkl (if ties are neglected). Two (asymp-
totically equivalent) ’random graph’ models are available for describing the
’pure randomness’ of a graph:

(1) the Bernoulli graph model Gp which assumes
(

n
2

)

independent link indi-

cators Skl ∼ Bin(1, p)
all with the same linking probability 0 < p < 1 (such that the number N

of links in Gp

has a Bin(n, p) distribution), and
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(2) the combinatorial model Γn,N where a fixed number N of edges is ran-
domly sampled over

all
(

(n

2)
N

)

possible selections.

For these models random graph theory provides a range of distributional
results on the exact or asymptotic (for n → ∞) distribution of clustering-
related test statistics (Bollobàs 1985, Palmer 1985). In the case of the thresh-
old graph G(d) with d = d(N), i.e. with N edges, we may consider, e.g.:

– the number Nisol of isolated vertices (one-element connected components
{k}) of G(d);
– the number Nproper of objects in proper (i.e. non-singleton) components of
G(d)

such that Nproper +Nisol = n holds trivially;
– the total number Ncomp of connected components (single linkage clusters)
at the level N , i.e.

after N fusions;
– the size Zclique of the largest clique in G(d);
– the smallest integer N = Nconn for which the threshold graph Gd(N) is
connected etc.

The hypothesis of ’randomness’ will be rejected in favour of a clustering
structure (at the significance level α) if, e.g., Nproper or Ncomp are smaller
than their α-quantile. The exact distribution of Nproper in Γn,N is derived in
Ling (1973, 1975) and Ling & Killough (1976). Many asymptotic results are
surveyed by Bollobás (1985), Nowicki 1988, Godehardt (1990, chap. 5, 1992)
and Godehardt & Horsch (1994).

For instance, assuming N = N(n) = b0.5n(log n + c + o(1))c for n → ∞
with some constant c > 0, the graph Γn,N consists asymptotically of one
large component and several isolated objects, i.e. P (Nproper = 1) → 1.
Moreover, the random variables Nisol and Ncomp − 1 are both asymptoti-
cally Poisson distributed Po(λ) with expectation λ = e−c, implying that
P (Γn,N is connected) = P (Ncomp = 1) → exp(e−c). Similar results relate
to the number of vertices with a given degree m and to the number of
isolated trees of size m in Γn,N or Gnp, but possibly for other choices of
N(n). Godehardt (1990, 1991) extends these results to the case of multi-
graphs Γn,N,t which are the superposition of t layers of the type Γn,N , de-
scribing t different aspects of similarity for the same n objects. Matula
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(1970, 1972, 1976) shows that in the graph Gnp the clique number Zclique is
asymptotically within bz(n, p)− ε, z(n, p) + εc for any ε > 0 where z(n, p) :=
2 log(1/p) n− 2 log(1/p) log(1/p) n+2 log(1/p)(e/2)+1 and derives various finite-
sample distributional properties.

The application of these graph models in cluster analysis is somewhat hin-
dered by the fact that the assumption of (almost) independent links is unre-
alistic in many cases since natural similarity relations tend to be transitive
(triangle inequality). Dissimilarity-based models with dependent links have
been mentioned in section 4 (see also Frank (1987) and the Euclidean in-
cidence graphs in Godehardt & Horsch (1994)), but have not been fully
developed in the ’homogeneous’ or ’unimodal’ case.

6. Probabilistic models for hierarchical and tree-like
classifications

Hierarchical classifications are broadly used in applications in order to get
a stratified structure of classes at various heterogeneity levels and to visu-
alize the mutual similarities between classes in a two-dimensional display.
A hierarchical classification is usually constructed in the form of a dendro-
gram (H, h) where H is a hierarchy of sets and h a numerical index on
H such that h(A) measures the heterogeneity of a class A ∈ H of objects
in terms of the data. It is well known that a dendrogram can be equiva-
lently described by the ultrametric dissimilarity matrix δ = (δkl)n×n where
δkl = min{h(A)|a ∈ H, k, l ∈ A} is the heterogeneity h(A) of the smallest
class A ∈ H that contains both objects k and l. This dissimilarity measure
fulfills the ultrametric inequality δkl ≤ max{δkj, δjl} for all j, k, l ∈ O (which
implies the triangle inequality), and the classes of H are just the δ-balls
A = B(k, d) := {l ∈ O|δkl ≤ d} (for d ≥ 0 and k ∈ O) while h(A) is the
δ-diameter of A.

Even if hierachical clustering algorithms are often applied to data points
x1, ..., xn in the Euclidean space, it seems to be difficult to design a general,
intuitive and spatial idea of a ’natural’ hierarchical classification in Rp. In
fact, hierarchical classifications suggest more an underlying evolutionary or
branching process in time or space and the related probabilistic models are
therefore often defined in terms of stochastic processes. In the following sec-
tions we will review models based on dendrograms, additive trees, Markov
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processes and combinatorial considerations.

6.1 The additive error model for dissimilarity data

The additive error model proposed by Degens (1983) assumes that the ob-
served dissimilarity matrix (dkl) reflects an underlying unknown dendrogram
structure (H, h) up to some random error. More specifically, if δ = (δkl) is the
ultrametric which characterizes (H, h), the random (observed) dissimilarities

Dkl = δkl + Ukl for k, l ∈ O, k 6= l (6.1)

are obtained from δkl by independent additive error terms Ukl all with the
same distribution density ψ(·) on R (e.g., a normal density). An esti-
mate for δ resp. for (H, h) is then obtained by maximizing the likelihood
L :=

∑ ∑

k<l ψ(dkl − δkl) over all ultrametrics δ and all unknown parameters
in ψ (e.g., by combinatorial or heuristic algorithms).

In particular, when we assume a normal distribution N(0, σ2) for ψ, the max-
imization of L amounts to minimizing the SSQ error criterion

∑ ∑

k<l(dkl −
δkl)

2 over δ (for combinatorial and penalty function minimization methods
see, e.g., De Soete, Carroll & DeSarbo 1987, De Soete 1988, Sriram & Lewis
1993) and it turns out that the level h(A) of any class A of the resulting opti-
mum dendrogram (H, h) is necessarily the average of the observed distances
of its direct predecessors B,C ∈ H with B + C = A (inducing a generalized
average linkage algorithm). Analogous results have been obtained for other
situations as well, e.g., for ψ a two-sided exponential distribution (generalized
median procedure), for Ukl ≥ 0 with a decreasing ψ (single linkage method),
or Ukl ≤ 0 with an increasing ψ (modified complete linkage method). These
results were obtained by Degens (1983, 1985, 1988) together with several gen-
eralizations which refer, e.g., to the analysis of genetic distance data (dkl) ob-
tained from DNA-DNA hybridization experiments. Since these experiments
can be repeated several times for each pair of species (objects) k, l ∈ O it is
possible to design a similar Gaussian additive error model with pair-specific
variances σ2

kl = V ar(Dkl) = V ar(Ukl) which can be estimated from the repli-
cated measurements of Dkl. This approach leads to hierarchical weighted
average linkage algorithms and yields theoretical consistency results.

6.2 Variance component models for genetic distance data

Replicated genetic distance data dkl have been typically used for reconstruct-
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ing the evolutionary tree of n given species in the form of a dendrogram.
Since the evolution of these species proceeds partially in parallel (or iden-
tical) streams in the past, the independence assumption from the previous
section will be unrealistic here. Therefore Lausen & Degens (1986) and De-
gens, Lausen & Vach (1988) have proposed and investigated several variance
component models which take into account various causes of variability of
the measurements and from the evolutionary process which leads to a non-
trivial dependence structure for the dissimilarities Dkl. A typical example is
given by:

Dklν = δkl + Ekl +
∑

j∈P (k,l)

Lj + Uklν for k, l ∈ O, k 6= l, ν = 1, ..., nkl(6.2)

where Ekl ∼ N(0, σ2
e) describes a pair-specific variation, P (k, l) is the set

of edges j in the path joining the object k with the object l (in the den-
drogram belonging to (δkl)), Lj the random evolutionary fluctuation existing
along these edges, and Uklν ∼ N(0, σ2

U) is the measurement error for the
replications ν = 1, ..., nkl of Dkl. The accuracy and stability of the resulting
phylogeny and the induced hierarchy can been checked by using weighted
three- or four-objects estimators for the variances (Wolf & Degens 1991).

6.3 Phylogenies and evolutionary Markov models for molecular se-
quences

Whilst phylogenetic trees and dendrograms have been constructed from mor-
phological data of species and from genetic distance matrices since a long
time, the advent of fast and precise sequencing methods in molecular biology
has revolutionized this field: Phylogenetic inference of n species k = 1, ..., n is
nowadays primarily based on the analysis of the corresponding nucleic acid
sequences xk = (xk1, ..., xkp) with p sites j = 1, ..., p and components xkj

taken from an alphabet A = {A,G,C, T} with s = 4 ’letters’ which repre-
sent the four nucleotides, bases or ’states’ adenine, guanine, cytosine, and
thymidine (for DNA strains); thus there are 4p different sequences. Similar
data are available, e.g., for RNA (s = 4) or proteins (s = 20). Assuming
that the underlying phylogeny has evolved in time t by random mutations
(substitutions) of the bases in single sites, probability models for the result-
ing branching process have been formulated in terms of a (homogeneous)
continuous-time Markov process for each site, and the phylogenetic tree is
estimated by maximum likelihood, as well as its branch lengths and other
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model parameters (substitution rates).

A simple model (Felsenstein 1981, Bishop & Friday 1985) assumes that the
mutation times for any single site j form a Poisson process with rate λ and
that, if a mutation takes place from a state ν, it flips to the state µ with
a probability πµ (e.g., πµ = 1/4 for all µ ∈ A). This yields the transition
probability Pνµ(t) = πµ(1 − e−λt) + δ∗νµe

−λt from ν to µ in a time period t
(where δ∗kl denotes Kronecker’s delta). More general cases are based on a
matrix R = (rνµ) of substitution rates rνµ (with zero row sums) such that
the matrix of transition probabilities is given by P (t) = (Pνµ(t)) = eRt, and
the probabilities πµ correspond to the stationary distribution of the induced
homogeneous Markov process.

The relationship between the n species is described by an (unrooted un-
weighted) tree T with n leaves k = 1, ..., n characterizing the n given species
and a number m of interior vertices k = n + 1, ..., n + m representing m
unobservable intermediate species in the past, together with branch lengths
t1, ..., tM which represent the time difference between two change points (for
binary trees: m = n − 2 and M = n − 3). In order to write down the like-
lihood function (6.4) below, it will be appropriate to specify one arbitrary
interior node k∗ of T as a root (k∗ = m + n, say, a hypothetical ancestor)
such that T becomes a directed graph T ∗ and its M branches can be written
in the form el = (al, bl) where the node al is the direct ancestor of the node bl
in T ∗ and the numeration is such that e1, ..., en end in the observed leaves of
the tree whilst each of the remaining edges en+1, ..., eM connects two interior
points of T ∗.

Our data consist of n sequences xk = (xk1, ..., xkp) ∈ Ap observed for p neigh-
bouring sites of n molecular strains (note that we pass over all problems of
optimum alignment here). Additionally we have to consider the (unobserv-
able) base sequences yk = (yk1, ..., ykp) ∈ Ap characterizing the putative
intermediate species (interior nodes) k = n + 1, ..., n + m in the mutation
process. For ease of notation we consider a ’homology’ model where all sites
j = 1, ..., p evolve independently and identically in time and the mutation
rates λl are identical for all branches el of the tree. Under these assumptions,
the likelihood of our sample x1, ..., xn is given by:

L(T, ϑ; x1, ..., xn) =
p

∏

j=1

Lj(T, ϑ; x1j , ..., xnj) (6.3)
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with factors given by:

Lj(T, ϑ; x1j , ..., xnj) =
∑

yn+1,j ,...,yn+m,j

πym+n,j
·

n
∏

l=1

Pyal,j
xbl,j

(tl;ϑ)·
M
∏

l=n+1

Pyal,j
ybl,j

(tl;ϑ)

(6.4)
and transition functions Pνµ(t;ϑ) as specified before. Here ϑ contains all
unknown parameter values of the Markov process, i.e. λ1, ..., λM , t1, ..., tM
(in fact, only the products λltl occur here), pνµ and rνµ.

The usual procedure for estimating the phylogenetic tree T and the un-
known parameter ϑ is provided by the maximum likelihood method which
includes, in particular, the maximization of L over all tree topologies T .
Excellent reviews of these methods were given by Felsenstein (1983a, 1988)
and Goldman (1990), and many more or less general models have been pro-
posed by Kimura (1980), Felsenstein (1981; all λg alike), Hasegawa et al.
(1985), Cavender & Felsenstein (1987), Barry & Hartigan (1987; 12 param-
eters per branch), Lausen (1989, 1991), Navidi, Churchill & Haeseler (1993)
and Schöniger et al. (1994). Various maximization or tree construction algo-
rithms were described by Hendy & Penny (1982), Felsenstein (1981, 1990),
Guénoche (1993a, 1993b), Barry & Hartigan (1987) and Navidi et al. (1993).
A uniqueness theorem for the likelihood solution was proved by Fukami &
Tateno (1989). A Bayesian approach has been followed by Felsenstein (1984)
and Kishino & Hasegawa (1989).

Another likelihood approach is related to classical parsimony methods where
the tree T and the unobservable ancestor sequences y1, ..., yM are chosen such
that, e.g., the total number Ntot of mutations along all branches is minimized
(Wagner trees). This approach considers y1, ..., yM as incidental parameters
and maximizes the corresponding likelihood L(T, ϑ, y1, ..., yM ;x1, ..., xn) with
respect to these sequences as well. For example, in the case A = {0, 1} with
s = 2 states, let us denote by ϑ = 1 − π ∈ [0, 1] the probability of a change
0 → 1 or 1 → 0 along a branch of T (in the previous model this corresponds
to constant average times λltl = c, say, and equal transition probabilities
1 − π = P01(c) = P10(c)). Then the likelihood has the form:

L(T, π, y1, ..., yM ;x1, ..., xn) = π
∑

j
(Nj

00
+Nj

11
) · (1 − π)

∑

j
(Nj

01
+Nj

10
) (6.5)

where N j
νµ denotes the number of branches el in T with character values

(ν, µ) their end nodes (in site j). Since both sums add to the constant
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Mp = (2n − 3)p for binary trees, the maximization of L with respect to T
and y1, ..., ym amounts to minimizing Ntot =

∑

j(N
j
01 +N j

10), the minimum
length or parsimony criterion, provided that π > 1/2. Various other parsi-
mony models are derived or discussed in Camin & Sokal (1965; Camin-Sokal
parsimony), Farris (1973), Le Quesne (1974; Dollo parsimony), Felsenstein
(1983b, 1988), Sober (1985), Felsenstein & Sober (1986) and Goldman (1990).
Practical optimization algorithms can be found in Fitch (1971), Hartigan
(1973; Fitch’s algorithm), Sankoff (1975), Day et al. (1986).

A combinatorial and probabilistic analysis of parsimony trees for randomized
or uniformly distributed sequence data in the discrete space Ap is provided
by Carter et al. (1990), Steel (1992) and Steel, Hendy & Penny (1992) which
use the duality between labeled trees (with node labels from Ap) and graph
colouring problems (with |A|p colours).

Sneath (1989) considers the random sampling of characters and shows that
the probability of detecting the correct tree can be small if there are only few
characters. Quite generally, the maximum likelihood and parsimony methods
were questioned by Nei (1987) and Saitou (1988) under the aspect that the
likelihood values are incomparable for different topologies T . There exist sim-
ple models where the results of a parsimony method will converge to a wrong
phylogenetic tree for n → ∞, even for equal mutation rates λl (Felsenstein
1978, Saitou 1988, Hendy & Penny 1989). This has motivated the develop-
ment of improved estimation methods for T based on ’invariant functions’
of the distances which involve, e.g., the ’four-point inequality’ which charac-
terizes an additive tree (Lake 1987, Cavender 1991, Day 1991, Navidi et al.
1993). In order to evaluate the confidence in estimated phylogenies Li (1989)
proposes tests for the significance of the estimated internodal lengths of T ,
Kishino & Hasegawa (1989) consider the variance of the log likelihood ratio,
and Hasegawa et al. (1988) and Felsenstein (1985) use bootstrap resampling
for this purpose.

6.4 Purely random hierarchies and trees

While the previous subsections focussed on models for hierarchies originating
from a ’natural’ clustering process there is also some need for the specifica-
tion of models for ’purely random’ hierarchies (or dendrograms): In fact,
such concepts are indispensable if we want, e.g.,

(a) to decide if a calculated dendrogram points really to an underlying hier-
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archical structure
of the data (as opposed to a situation where it bears no more structure

than a ’purely
random’ dendrogram; e.g., Murtagh 1983, Frank & Svensson 1981), or

(b) to compare two dendrograms (H1, h1), (H2, h2) resp. δ1, δ2, two hierar-
chies H1,H2 or

two phylogenetic trees and to check if they are more different from each
other than to

be expected under ’pure randomness’ (eventually assuming the same clus-
tering strategy;

Lapointe & Legendre 1992a, 1992b), or, as a special case,

(c) investigate if a new dendrogram (H1, h1) obtained from the data is sig-
nificantly different

from a known (e.g., traditionally established) classification (H2, h2) of
the objects (Nemec

& Brinkhurst 1988).

Similar questions relate to phylogenetic or additive trees as well as to ’non-
weighted’ modifications considering the tree topology only.

In situations like (b) or (c), the usual approach proceeds by defining, in a
first step, a suitable consensus index or a distance measure D(T1, T2) between
two hierarchical structures T1, T2; typical examples are the partition (or sym-
metric difference) metric, quartet metrics, the nearest-neighbour interchange
(NNI) metric and the cophenetic (correlation) coefficient (for details see,
e.g., Boorman & Oliver 1973, Waterman & Smith 1978, Day 1983, Fowlkes
& Mallows 1983, Brown & Day 1984, Lapointe & Legendre 1990, 1992b,
Steel & Penny 1993). Then, in a second step, we have to check if the value
D(T1, T2) for the calculated classifications T1, T2 is significantly larger than
to be expected under a hypothesis H0 of ’pure randomness’ of T1 and/or T2

or of the data x1, ..., xn or (dkl) (see Shao & Rohlf 1983, Shao & Sokal 1986,
Lapointe & Legendre 1990). Such an approach requires the calculation of
suitable percentage points or, at least, of the expectation and variance of the
criterion D which proves to be quite difficult in the general case since the
relation:

calculated-classification = clustering-algorithm(data)

is usually too complex as to allow to obtain any exact null distribution for
D. In most cases, randomization, permutation and Monte Carlo tests will
be in order (Rohlf 1965, Hubert 1985, Archie 1989) and percentage points
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of D are approximated by bootstrapping (Felsenstein 1985, Sanderson 1989,
Krajewski & Dickerman 1990) and simulation under H0.

In this latter framework, there is a lot of essentially combinatorial approaches
for defining ’purely random’ hierarchies, dendrograms and trees by an equidis-
tribution on a finite set S of ’distinguishable’ hierarchical structures (hierar-
chies, dendrograms, trees, eventually including size and shape constraints).
The investigation and simulation of these null models requires combinatorial
enumeration techniques as well as computationally simple generation algo-
rithms. This topic is discussed and surveyed, e.g., by Simberloff (1987),
Furnas (1984), Quiroz (1989), Page (1991), Lapointe & Legendre (1991) and
Steel & Penny (1993) who present many algorithms. In the following we will
briefly sketch some typical cases.

We start with the remark that a dendrogram (H, h) for n objects can be
considered as a rooted labeled and weighted tree Tn with n leaves and (at
most) n − 1 interior points (corresponding to n − 1 cluster fusions). It in-
duces (and is induced by) an additive (or path length) tree where each leaf
has the same path distance from the root. Eliminating edge lengths and the
root we obtain the combinatorial structure of an undirected tree-like graph.
Obviously, two dendrograms or (additive) trees may differ in various aspects
such as topology T , labeling L, fusion ranks R and fusion levels (or edge
weights) W and therefore the definition of a null distribution H0 of ’pure
randomness’ requires a careful specification of the set S in order to include
(only) the practically relevant aspects. In particular, we have to distinguish,
between rooted and unrooted trees, unlabeled, fully and terminally labeled
trees, binary and t-ary trees, ranked and weighted dendrograms (with rank-
ordered resp. real-valued fusion levels) etc. which all define different levels
of analysis. Exact enumerations and probabilities can be obtained in a few
(unweigthed) cases, in particular for the size of S:

(a) There are an = nn−2 fully labeled unrooted trees with n vertices (Cayley
1889);
(b) The number of rooted binary and terminally labeled (unweighted) trees
(T, L) with n leaves

and n− 1 interior edges (characterizing the nesting structure in a bifur-
cating hierarchy H)

is given by bn = (2n− 3)!/[2n−2(n− 2)!] = 1 · 3 · 5 · · · (2n− 3) (Harding
1971);

(c) The number of unrooted binary and terminally labeled (unweighted) trees
(unweighted phy-
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logenetic trees) with n leaves is given by cn = bn/(2n − 3) = (2n − 5) ·
(2n− 7) · · · 5 · 3 · 1

(Schröder 1870);

(d) There are dn = n!(n−1)!/2n−1 topologically distinguishable binary ranked
dendrograms

(T, L,R) with n labeled leaves and n− 1 distinct fusion ranks (Frank &
Svensson 1981).

For this latter random dendrogram case (d), Dale & Moon (1988) obtain the
exact distribution of the size of the smaller subtree attached to the root, the
number S of terminal single objects (i.e., the last S joins in the dendrogram
join all a single object to non-singleton classes), and the number Mk of sub-
trees with k + 1 leaves. Harding (1971) derives probabilities relating to the
shape of rooted (unlabeled and labeled) binary trees, Day (1986) and Steel &
Penny (1993) obtain the expectation, variance and (simulated or asymptoti-
cally Poisson) distributions for several tree comparison metrics under various
specifications for H0.

Since the number of trees or hierarchies is extensively large even for a small
number n of objects, a full enumeration is not possible and therefore effective
methods for the generation and simulation of random structures become very
important: Furnas (1984) describes, e.g., a two-step procedure for generating
random additive trees by first obtaining a random rooted binary and termi-
nally labeled tree (T, L) (using an enumeration technique for the classical
Prüfer code of a tree), and then assigning random lengths to its branches.
Similarly, De Soete (1984) constructs a random binary dendrogram (T, L,W )
by assigning random fusion level values to the vertices of (T, L) whilst Rohlf
(1983) and Murtagh (1983) consider random binary ranked dendrograms
(T, L,R) assuming n− 1 different fusion ranks. Murtagh (1984) investigates
a packed representation of the ’shape’ (T,R) of labeled dendrogams (T, L,R).
The method of Lapointe & Legendre (1991) starts with n − 1 random uni-
formly distributed fusion level values W1, ...,Wn−1 ∈ [0, 1], arranges them in
an ultrametric distance matrix (δkl)n×n and assigns random labels to its n
rows (and columns) in order to construct a random dendrogram (with exten-
sions for the case of other level distributions by using a double permutation
method). The triple permutation algorithm in Lapointe & Legendre (1992a)
constructs a random additive tree by means of the fact that any additive
tree metric (akl) has a composition (akl) = (δkl) + (τkl) with an ultrametric
δ and a star metric τ . Finally, Quiroz (1989) describes the construction of
random rooted fully or terminally labeled t-ary trees with several generaliza-
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tions, and Van Cutsem (1993) proposes, in analogy to Harding (1971), an
iterative Markovian bifurcating process for obtaining a random rooted and
terminally labeled binary tree (which is implemented recursively by means
of a suitable declarative computer language).

Lapointe & Legendre (1992a, 1992b) have used these generation methods
to derive simulated percentage points for various distance indices D(T1, T2)
(e.g., cophenetic correlation) and random dendrograms and/or additive trees
T1, T2.
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