MONITORING PROCEDURES TO DETECT UNIT ROOTS
AND STATIONARITY

Ansgar Steland1
Institute of Statistics
RWTH Aachen University
Germany
steland@stochastik.rwth-aachen.de

1Address of correspondence: Prof. Dr. A. Steland, Institute of Statistics, RWTH Aachen University, Wüllnerstr. 3, D-52056 Aachen, Germany.
ABSTRACT. When analysing time series an important issue is to decide whether the time series is stationary or a random walk. Relaxing these notions, we consider the problem to decide in favor of the $I(0)$- or $I(1)$-property. Fixed-sample statistical tests for that problem are well studied in the literature. In this paper we provide first results for the problem to monitor sequentially a time series. Our stopping times are based on a sequential version of a kernel-weighted variance-ratio statistic. The asymptotic distributions are established for $I(1)$ processes, a rich class of stationary processes, possibly affected by local nonparametric alternatives, and the local-to-unity model. Further, we consider the two interesting change-point models where the time series changes its behaviour after a certain fraction of the observations and derive the associated limiting laws. Our Monte-Carlo studies show that the proposed detection procedures have high power when interpreted as a hypothesis test, and that the decision can often be made very early.

Keywords: Autoregressive unit root, change-point, control chart, nonparametric smoothing, sequential analysis, weighted partial sum process.
INTRODUCTION

For many time series, in particular for economic data, the question whether the series is stationary or becomes stationary when taking first order differences is a delicate problem. Fixed-sample tests have been extensively studied in the statistics and econometrics literature and this topic is still an active area of research. Most proposed unit root tests are parametric approaches based on the least squares estimator in an AR model. Under the random walk hypothesis non-standard limiting distributions appear. Classic and more recent references are Dickey and Fuller (1979), Rao (1978, 1980), Evans and Savin (1981), Chan and Wei (1987, 1988), and Phillips and Perron (1988), Stock (1994a), Saikkonen and Lütkepohl (2003), and Lanne and Saikkonen (2003). Nonparametric tests have been studied by Kwiatkowski et al. (1992), Bierens (1997), Breitung (2002), and Giraitis et al. (2003). The KPSS test, proposed in the first paper and also studied in detail in the latter two articles, avoids a detailed specification of the process. It can be easily used for testing both the null hypothesis of stationarity against the unit root alternative, and vice versa, and, as shown by simulations, is considerably more robust in terms of type I error than most parametrically motivated tests. Thus we use that statistic as a starting point to develop detection procedures which can be used to detect a change from $I(0)$ (covering stationarity) to $I(1)$ (covering random walks), and vice versa. Similar detection procedures related to the Dickey-Fuller statistic, which is often more powerful but can be affected by severe size distortion, will be studied by the author in a separate paper in detail (Steland, 2005d).

As an example of a simple change-point model (regime switching model) capturing this feature consider

$$Y_{n+1} = \phi_n Y_n + \epsilon_n$$

where

$$\begin{cases}
\phi_n = 1, & n = 1, \ldots, \lfloor N\bar{\theta} \rfloor - 1, \\
|\phi_n| < 1, & n = \lfloor N\bar{\theta} \rfloor, \ldots, N,
\end{cases}$$

with mean-zero error terms $\{\epsilon_n\}$ and a change-point parameter $\bar{\theta} \in (0, 1)$. Until the change the in-control model of a $I(1)$ process holds. This model is a special case of a $I(1)$-to-$I(0)$ change-point model studied in this article. If $\phi_n = \phi \in [-1, 1]$ Lai and Siegmund
(1983) studied fixed accuracy estimation of an AR parameter assuming i.i.d. error terms by sampling until the Fisher information exceeds a constant. Allowing for dependent errors, we consider a different setup and study truncated stopping times of the type $S_N = \min\{1 \leq n \leq N : T_{N,n} < c\}$ for some control statistic, $T_{N,n}$, and a control limit (critical value) c, where monitoring stops latest at the Nth observation. That maximum sample size, N, plays the role of a time horizon where a decision is made in any case; if no signal is given, the in-control model (null hypothesis) is accepted as a plausible model, otherwise one stops concluding that a change occurred and further measures may be in order. We stop latest at N, since often the assumption implicit to many classic monitoring procedures with random sample size, namely that a process can and should be monitored forever, is unrealistic, and approaches allowing to specify a time horizon may be more appropriate in many cases. For example, consider financial portfolios. Continuous or pseudo-continuous (daily) trading is often not feasible, due to cost constraints and because identification of mid- and long-term investment chances requires time- and cost-intensive analyses on a quarterly to yearly basis. Between these analyses one should apply monitoring rules with time horizon to trigger additional updates, risk hedges, or other measures. Having approximations to the distributions of the control statistic and the monitoring rule (stopping time) for large N are therefore of interest, thus motivating to assume $N \to \infty$ for asymptotic studies.

To allow the design of procedures satisfying arbitrary constraints, e.g. prespecified type I error, average run length (ARL) or median run length, we establish the limiting laws which are functionals of Brownian motion or the Ornstein-Uhlenbeck process. Besides the important change-point models mentioned above, we consider pure random walks, stationary processes, local trend-stationary processes, and the local-to-unity model, where a sequence of models is considered which converges to a random walk, as the maximum sample size, N, tends to ∞.

Let us briefly comment on other related work. The nonparametric detection of a change in the mean of a stationary time series based on kernel-weighted averages and the problem of optimal kernel choice has been studied by Steland (2004a, 2005a). For the related problem
to detect a change in the mean of a random walk see Steland (2005b). A posteriori methods, where observations after the change are also available, have been studied by Ferger (1993, 1995), Hušková (1999) and Hušková and Slaby (2001). For an approach based on jump-preserving statistics aiming at detecting quickly large shifts see Pawlak, Rafajłowicz and Steland (2004) and Steland (2005c). The problem to detect changes in a linear model has been recently studied by Horváth et al. (2004) using CUSUMs of residuals.

Retrospective change-point detection allowing for time series data has been studied quite extensively by many authors. Krämer and Ploberger (1992) study partial sums of OLS regression residuals to detect structural changes. Bai (1994) established weak convergence of the sequential empirical process of ARMA(p,q)-residuals and constructed a CUSUM-type statistic to detect a change in the distribution of the innovations. Noting that, e.g., ML estimates usually can be written as arithmetic means of stationary martingale differences, Lee et al. (2003) studied a CUSUM procedure to detect changes in parametric time series models. For work on structural breaks and changes in the trend function in integrated variables, we refer to Nyblom (1989), Perron (1991), Vogelsang (1997), Hansen and Johansen (1997), and Bai, Lumsdaleine and Stock (1998). For further references to the extensive literature about these issues we refer to the references given in these papers.

The paper is organised as follows. In Section 1 we explain the proposed monitoring procedure and basic assumptions. Functional central limit theorems (FCLTs) under general conditions are given in Section 2. Change-point problems for a change from $I(0)$ to $I(1)$, and vice versa, are discussed in Section 3. Section 4 provides Monte Carlo results to assess the accuracy and performance of the considered stopping times demonstrating that the procedure works very reliable and often can detect stationarity earlier than a fixed sample test, and that using a weighting scheme improves the detection of a change-point.
1. Preliminaries, method, and assumptions

We will use the following nonparametric definitions of the notions \(I(0) \) and \(I(1) \). A time series \(\{Y_n\} \) is called \(I(0) \), denoted by \(Y_n \sim I(0) \), if

\[
N^{-1/2} \sum_{i=1}^{[Ns]} Y_i \Rightarrow \sigma B(s), \quad s \in [0, 1],
\]

holds for some constant \(0 < \sigma < \infty \). Here and throughout the paper \([x]\) denotes the floor function, \(B(s) \), \(s \in [0, 1] \), denotes Brownian motion, and \(\Rightarrow \) stands for weak convergence in the space \(D[0, 1] \) of all right-continuous functions with left-hand limits equipped with the Skorohod topology given by the Skorohod metric \(d \). For that approach to weak convergence we refer to Billingsley (1968) and Prigent (2003). In terms of mixing and moment conditions, a sufficient condition for (1) is, e.g., that \(\{Y_n\} \) is a stationary \(\alpha \)-mixing sequence with \(E|Y_1|^{2+\delta} < \infty \) and \(\sum_k \alpha(k)^{2/(2+\delta)} < \infty \) for some \(\delta > 0 \) where \(\alpha(k) \) are the mixing coefficients (e.g. Herrndorf (1985)). Some of our limit theorems assume (1) under additional weak regularity conditions. We will formulate these conditions where needed.

\(\{Y_n\} \) is integrated of order 1, denoted by \(Y_n \sim I(1) \), if

\[
N^{-1/2} Y_{[Ns]} \Rightarrow \sigma B(s), \quad s \in [0, 1],
\]

as \(N \to \infty \), and the differences, \(\Delta Y_n = Y_n - Y_{n-1} \), form a \(I(0) \) series. Note that our definition of \(I(0) \) does not necessarily implies stationarity and allows for a certain degree of dependence. The \(I(1) \) property is also quite general, covering classic random walks \(Y_n = \sum_{i=1}^n u_i \) with mean-zero i.i.d. innovations \(\{u_i\} \), but, e.g., also allows for random walks with dependent innovations \(u_t \) satisfying a functional central limit theorem of the type (1). However, long memory processes in the sense that \(\sum_{k=-\infty}^\infty |\text{Cov}(Y_1,Y_{1+k})| = \infty \) are not allowed.

In the literature the \(I(0) \) property often means that the time series is a linear process, \(\sum_{j=0}^\infty \psi_j Z_{t-j} \), where \(\{Z_n\} \) is a weak white noise sequence and the parameter sequence \(\{\psi_j\} \) is absolutely summable with \(\sum_j \psi_j \neq 0 \). However, our definitions have been used by many
other researchers, e.g., Stock (1994b), and are appropriate to describe the classes of time series which can be distinguished by the methods studied in this paper.

Let us now assume that the time series observations Y_1, \ldots, Y_N, $N \in \mathbb{N}$, arrive sequentially at ordered time points t_1, \ldots, t_N. To simplify presentation we assume $t_n = n \in \mathbb{N}$, but more general time designs can be handled as in Steland (2005b). It is known that a robust nonparametric unit root test is given by considering the ratio of the dispersion of the cumulated observations and the dispersion of the observations, cf. Kwiatkowski et al. (1992) or Breitung (2002). Having in mind change-point models where the time series changes its $I(0)$ respectively $I(1)$ property at some unknown time point, we introduce appropriate kernel weights to avoid that past observations dominate the statistic. We first introduce a sequential kernel-weighted variance-ratio process which is appropriate to detect $I(0)$ processes, and will then describe a modification to detect $I(1)$. Define

$$ U_N(s) = 0 \text{ for } s \in [0, 1/N) \text{ and } $$

$$ U_N(s) = \frac{[Ns]^{-3} \sum_{i=1}^{[Ns]} \left(\sum_{j=1}^{i} Y_j \right)^2 K_h(i - [Ns])}{[Ns]^{-2} \sum_{j=1}^{[Ns]} Y_j^2}, \quad s \in [1/N, 1]. $$

$K_h(\cdot) = K(\cdot/h)/h$, where K is a Lipschitz continuous density function with mean 0 and finite variance, and $h = h_N > 0$ is a sequence of bandwidth parameters satisfying

$$ N/h_N \to \zeta \in [1, \infty), $$

as $N \to \infty$. The definition of the kernel weights, $K_h(i - [Ns])$, requires only a kernel function K defined on $(-\infty, 0]$. Thus, we can and will assume that K is symmetric around 0, otherwise put $K(z) = K(-z)$, $z > 0$, if K is only defined for $z \leq 0$. Clearly, U_N depends on the bandwidth parameter h. If K has support $[-1, 1]$, U_N is a function of the current and the most recent h observations. However, our results allow for kernels with unbounded support, e.g., the Gaussian kernel. To apply the procedure, one chooses the time horizon N

2In a previous version of this paper we scaled numerator and denominator by powers of N^{-1} instead of $[Ns]^{-1}$. Simulations indicate that both version have very similar power properties. Scaling with $[Ns]^{-1}$ has the advantage that the values of the process needed to calculate the stopping time do not depend on the maximum sample size N, but requires to put $U_N(s) = 0$ for $s \in [0, 1/N)$.
and the bandwidth h, puts $\zeta = N/h$, and uses the asymptotic distributional results given in the subsequent sections as approximations.

Although technically not required, one usually employs kernels $K(z)$ which are decreasing in $|z|$ and satisfy $\lim_{|z| \to \infty} K(z) = 0$, to ensure that past partial sums have smaller weights than more recent ones. The technical role of the denominator is to estimate a nuisance parameter summarising the influence of the dependence structure of the time series on the asymptotic distribution of the numerator of U_N if $\{Y_n\}$ is $I(1)$.

If $\{Y_n\}$ is $I(0)$, the numerator of U_N has a different convergence rate, and one should also modify the denominator of U_N. Following Kwiatkowski et al. (1992) and others, let

$$
\tilde{U}_N(s) = N^{-1} \sum_{i=1}^{\lfloor Ns \rfloor} \left(\sum_{j=1}^i Y_j \right)^2 K_h(i - \lfloor Ns \rfloor) / s^2_{Nm}(s), \quad s \in [0, 1],
$$

where

$$
s^2_{Nm}(s) = \frac{1}{N} \sum_{i=1}^{\lfloor Ns \rfloor} Y_i^2 + 2 \sum_{k=1}^m w(k, m) \frac{1}{N} \sum_{i=1}^{\lfloor Ns \rfloor} Y_i Y_{i+k}, \quad s \in [0, 1],
$$

is the process version of the Newey-West HAC estimator. $w(k, m)$ is a weighting function. One may use the Bartlett window, $w(k, m) = 1 - k/m$, as in Newey and West (1987) which guarantees nonnegativity of $s^2_{Nm}(s)$. For consistency the rate $m = o(N^{1/2})$ suffices under general conditions, see Andrews (1991) where also various choices of the weighting function are discussed. As shown in Giraitis et al. (2003), for Bartlett weights the rate $m = o(N)$ suffices under certain conditions.

Sequential I(0) detection: Assume the time series is $I(1)$ before the change-point and $I(0)$ after the change. Noting that large values of $U_N(s)$ provide evidence for the unit root hypothesis whereas small values indicate $I(0)$, we propose the stopping time

$$
R_N = R_N(c) = \min\{k \leq n \leq N : U_N(n/N) < c\},
$$

with the convention $\min\emptyset = N$, for some critical value (control limit) c. k denotes the start of monitoring. As supported by our simulations, one should choose $k > 1$ sufficiently large
to avoid that the procedure starts with only a few observations. Thus, it is reasonable to assume that

\[k = \lfloor \kappa N \rfloor, \quad \text{for some } \kappa \in (0, 1), \]

although some of our theoretical results do not require that condition. The related fixed-sample test rejects the null hypothesis \(H_0 \) that \(\{Y_n\} \) is a \(I(1) \) process in favour of the alternative \(H_a \) that the time series is \(I(0) \) if \(R_N < N \). The associated type I error rate is \(P_0(R_N < N) \), where \(P_0 \) indicates that the probability is calculated assuming \(H_0 \), i.e., \(Y_n \sim I(1) \). We propose to select \(c \) as follows. First fix size \(\alpha \in (0, 1) \). Then choose \(c \) such that the associated fixed-sample test has type I error rate \(\alpha \), i.e., \(P_0(R_N < N) = \alpha \). Our asymptotic results can be used to obtain large sample approximations for \(c \).

Noting that many classes of stationary time series considered in practice satisfy the \(I(0) \) property (1), the proposed detection rule can be used to detect stationarity, if the application suggests to consider the class of stationary \(I(0) \) time series.

Sequential \(I(1) \) \(\text{(unit root)} \) detection: Assume the time series starts as a (subset of a) stationary \(I(0) \) process which ensures that the Newey-West estimator is consistent (for conditions see Theorem 2.2 (ii)), and changes its behavior to a \(I(1) \) process at a change-point (structural break). To detect the change one may use the stopping time

\[\tilde{R}_N = \tilde{R}_N(c) = \min\{k \leq n \leq N : \tilde{U}_N(n/N) > c\} \]

for some critical value \(c \). The associated fixed-sample test rejects the null hypothesis \(H_0 : I(0) \)-stationarity in favour of \(H_a : I(1) \)-unit root, if \(\tilde{R}_N < N \). Again, one may choose the control limit \(c \) to ensure that the type I error \(P_0(\tilde{R}_N < N) \) attains a nominal value \(\alpha \). Note that now \(P_0 \) indicates that the probability has to be calculated assuming that \(Y_n \sim I(0) \).

2. **Asymptotic results for \(I(0) \) and \(I(1) \) processes**

In this section we provide the asymptotic distribution theory of the processes \(U_N \) and \(\tilde{U}_N \) and the related stopping times \(R_N \) and \(\tilde{R}_N \) by establishing FCLTs under various basic
distributional assumptions of interest. Particularly, these results can be used to obtain approximate critical values by simulating from the limiting law and also justify to simulate the procedures using normally distributed error terms.

2.1. Asymptotics for \(I(1) \) processes. The following result provides the asymptotic distribution of \(U_N \) under the random walk hypothesis that the time series \(\{Y_n\} \) is \(I(1) \). The result in Breitung (2002, Proposition 3, p. 349) is obtained as a special case by letting \(K_h(\cdot) = 1 \) and \(s = 1 \). In general, the asymptotic distribution is a functional of the Brownian motion, the kernel \(K \), and the parameter \(\zeta = \lim_{N \to \infty} N/h_N \).

Theorem 2.1. Assume \(\{Y_n\} \) is \(I(1) \) in the sense of (2), then

\[
U_N(s) \Rightarrow \mathcal{U}_1(s) = \frac{\zeta s^{-1} \int_0^s K(\zeta(r - s)) \left(\int_0^r B(t) \, dt \right)^2 \, dr}{\int_0^s B(r)^2 \, dr},
\]

in \(D[\kappa, 1] \), as \(N \to \infty \) with \(N/h \to \zeta \). The process \(\mathcal{U}_1 \) has continuous sample paths w.p. 1.

Proof. Clearly, we have

\[
X_{1N}(s) = [Ns]^{-2} \sum_{i=1}^{[Ns]} Y_i^2 \Rightarrow \sigma^2 s^{-2} \int_0^s B(r)^2 \, dr = X_1(s).
\]

Since \(K \) is Lipschitz continuous and \(N/h \to \zeta \), a more involved argument using the Skorohod/Dudley/Wichura theorem shows that

\[
X_{2N}(s) = [Ns]^{-3} \sum_{i=1}^{[Ns]} \left(\sum_{j=1}^i Y_j \right)^2 K_h(t_i - t_{[Ns]})
\]

can be approximated by a continuous functional of \(N^{-1/2}Y_{[Ns]} \), and therefore

\[
X_{2N}(s) \Rightarrow \zeta s^{-3} \sigma^2 \int_0^s \left(\int_0^r B(t) \, dt \right)^2 K(\zeta(r - s)) \, dr = X_2(s),
\]
as \(N \to \infty \). However, to conclude weak convergence of \(X_{2N}(s)/X_{1N}(s) \) we need joint weak convergence of the pair \((X_{1N}(s), X_{2N}(s)) \) in the space \((D[\kappa, 1])^2 \). By the Skorohod/Dudley/Wichura theorem we may assume that the convergence of \(X_{1N}(s) \) and \(X_{2N}(s) \) is in the supnorm. First, note that the finite-dimensional distributions of \(\lambda_1 X_{1N} + \lambda_2 X_{2N} \) converge to the corresponding finite-dimensional distributions of \(\lambda_1 X_1 + \lambda_2 X_2 \), as \(N \to \infty \),
for any scalars $(\lambda_1, \lambda_2) \in \mathbb{R}^2$. Further, clearly, the sequence $\{(X_{1N}(s), X_{2N}(s)) : s \in [\kappa, 1]\}$, $N \geq 1$, is tight, since both coordinate processes are tight. We obtain joint weak convergence $(X_{1N}, X_{2N}) \Rightarrow (X_1, X_2)$, $N \to \infty$, as elements of the function space $(D([\kappa, 1]))^2$. Now we can apply the continuous mapping theorem (CMT) to obtain $X_{2N}/X_{1N} \Rightarrow X_2/X_1$, $N \to \infty$. Since K is Lipschitz continuous and integration is continuous, numerator and denominator are continuous functions of s, w.p. 1. Hence $U_1(s)$ has continuous sample paths w.p. 1.

\[\square\]

Remark 2.1. Observe that the theorem can be slightly extended to yield $U_N(s) \Rightarrow U_1(s)$, as $N \to \infty$, in $D[0, 1]$, if $U_1(s)$ is defined for $s \in (0, 1]$ by the right side of (6), and $U_1(0) = 0$. Nevertheless, in Theorem 2.1, and also in the sequel, for $U_N(s), \tilde{U}_N(s), R_N$, and \tilde{R}_N we consider weak convergence in the space $D[\kappa, 1]$, which suffices for our purposes.

In practical applications the time series is sometimes first demeaned or detrended. This alters the asymptotic distribution as follows.

Remark 2.2. Suppose the procedure is applied to the residuals instead of the original observations. For applications the most important cases are that the sample Y_1, \ldots, Y_N is centered at its mean or detrended. In the former case Y_i is replaced by

$$\hat{\epsilon}_i = Y_i - N^{-1} \sum_{i=1}^{N} Y_i, \quad i = 1, \ldots, N, \quad \text{('demeaned')},$$

whereas in the latter one uses

$$\hat{\epsilon}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 i, \quad i = 1, \ldots, N, \quad \text{('detrended')},$$

where $\hat{\beta}_0$ and $\hat{\beta}_1$ are the OLS estimators from a regression of Y_i on the regressors $(1, i)$. Then the Brownian motion B in the formula for U_1 has to be replaced by the tied-down Brownian motion (Brownian bridge) $B^\mu(s) = B(s) - sB(1)$ when demeaning and

$$B^\mu(s) = B(s) - (4 - 6s) \int_0^1 B(r) \, dr - (12s - 6) \int_0^1 rB(r) \, dr, \quad s \in [0, 1],$$

when detrending.
Corollary 2.1. Under the conditions of Theorem 2.1,

\[N^{-1}R_N \overset{d}{\rightarrow} \min\{\kappa \leq s \leq 1 : U_1(s) < c\}, \quad N \to \infty. \]

Proof. Note that

\[N^{-1}R_N > x \iff \sup_{s \in [\kappa, x]} U_N(s) \geq c \]

By the CMT

\[V_N(x) = \sup_{s \in [\kappa, x]} U_N(s) \Rightarrow \sup_{s \in [\kappa, x]} U_1(s) = V(x), \]

\[N \to \infty, \] which implies that for all \(x \in \mathbb{R} \) and all continuity points \(c > 0 \) of the distribution function of \(V(x) \) we have

\[\lim_{N \to \infty} F_N(x) = \lim_{N \to \infty} P(N^{-1}R_N \leq x) = P(\sup_{s \in [\kappa, x]} U_1(s) < c) = F(x). \]

It remains to check whether \(V(x) \) may have atoms. Since \(U_1 \in C[0, 1] \) w.p. 1, we may work in the separable Banach space \((C[0, 1], \| \cdot \|_\infty)\) and can apply Lifshits (1982, Theorem 2) which asserts that the distribution of \(V(x) \) can have an atom only at the point

\[\gamma_x = \sup_{0 \leq t \leq x} \{ E(U_1(t)) = 0, \} \]
equals 0 on \((-\infty, \gamma_x)\), and is absolutely continuous with respect to Lebesgue measure on \([\gamma_x, \infty)\). Hence all \(c > 0 \) are continuity points of \(V(x) \). \(\square \)

2.2. Asymptotics for \(I(0) \) processes. For weakly stationary \(I(0) \) time series \(\{Y_n\} \) satisfying a certain condition on the fourth-order moments, the variance-ratio process \(U_N(s) \) still has a non-degenerate limiting distribution if scaled with \(N \). However, the limit depends on a nuisance parameter summarizing the dependence structure. We consider both mean-zero \(I(0) \) processes and \(I(0) \) processes which are disturbed by a local deterministic alternative.

For the process \(\widetilde{U}_N(s) \) using a Newey-West type estimator to eliminate the nuisance parameter from the limit distribution, we use a weak mixing condition.

The first result considers stationary \(I(0) \) processes. The limit given in Kwiatkowski et al. (1992, formula 14) is obtained as a special case if \(K_h(\cdot) = 1, \zeta = 1, \) and \(s = 1. \)
Theorem 2.2.

(i) Assume \(\{Y_n\} \) is a weakly stationary mean zero I(0) process such that \(\{Y_n^2\} \) is weakly stationary,

\[
\gamma_2(k) = E(Y_1^2Y_{1+k}^2) \to 0, \quad |k| \to \infty.
\]

Then

\[
[Ns]U_N(s) \Rightarrow U_2(s) = \frac{\sigma^2}{EY_1^{2}} s^{-1}\zeta \int_0^s B(r)^2 K(\zeta(r - s)) \, dr,
\]

in \(D[\kappa, 1] \), as \(N \to \infty \). The process \(U_2 \) has continuous sample paths w.p. 1.

(ii) Assume \(\{Y_n\} \) is a strictly stationary \(\alpha \)-mixing I(0) process such that \(EY_4^\nu < \infty \)

and

\[
\sum_{j=1}^\infty j^2 \alpha(j)^{(\nu-1)/\nu} < \infty,
\]

for some \(\nu > 1 \). Then, if \(m/N^{1/2} = o(1) \),

\[
\tilde{U}_N(s) \Rightarrow \tilde{U}_2(s) = s^{-1}\zeta \int_0^s B(r)^2 K(\zeta(r - s)) \, dr,
\]

in \(D[\kappa, 1] \), as \(N \to \infty \).

Proof. By assumption \(N^{-1/2} \sum_{i=1}^{[Ns]} Y_i \Rightarrow \sigma B(s) \), as \(N \to \infty \), where \(\sigma^2 = \sum_{k=-\infty}^\infty E(Y_1Y_{1+k}) \).

By the weak law of large numbers (Brockwell and Davis (1991), Theorem 7.1.1), (7) implies that for fixed \(s \in [\kappa, 1] \)

\[
V_{N1}(s) = [Ns]^{-1} \sum_{i=1}^{[Ns]} Y_i^2 \Rightarrow EY_1^2 = V_1,
\]
as $N \to \infty$, where P_{L^2} means that the convergence holds in probability and in quadratic mean, i.e., in the L^2-space. The limit is a.s. constant in s. Further,

$$V_{N2}(s) = \frac{N}{[Ns]} N^{-1} \sum_{i=1}^{[Ns]} \left(\sum_{j=1}^{i} Y_j \right)^2 K_h(t_i - t_{\lfloor Ns \rfloor})$$

$$= \frac{N}{[Ns]} (N/h) \int_0^s \left(N^{-1/2} \sum_{j=1}^{[Nr]} Y_j \right)^2 K([Nr]/h - [Ns]/h) \, dr$$

$$\Rightarrow \sigma^2 s^{-1} \int_0^s K(\zeta(r-s)) B(r)^2 \, dr = V_2(s),$$

if $N \to \infty$. Billingsley (1968, Theorem 4.4) now implies weak convergence of the pair (V_{N1}, V_{N2}), and an application of the CMT yields $V_{N2}/V_{N1} \Rightarrow V_2/V_1 = U_2$, as $N \to \infty$. Since K is Lipschitz continuous, the process U_2 has continuous sample paths w.p. 1. To show (ii) the proof is modified as follows. By Andrews (1991, Lemma 1) the mixing condition (8) ensures his Assumption A. Hence, if $m/N^{1/2} = o(1)$, $s^2 N_m(s) \overset{P}{\to} s \sigma^2$, as $N \to \infty$, which implies weak convergence to the non-stochastic function $s \sigma^2$, $s \in [\kappa, 1]$.

\[\square \]

Remark 2.3. Statement (i) implies that the U_N statistic is consistent against stationary alternatives.

Remark 2.4. Consistency of s^2_{Nm} for Bartlett weights has also been shown under the weaker condition $m/N = o(1)$ provided that $\sum_j |\gamma_j| < \infty$, $\gamma_j = \text{Cov}(Y_1, Y_{1+j})$, and

$$\sup_h \sum_{r,s=-\infty}^{\infty} |\kappa(h, r, s)| < \infty$$

where

$$\kappa(h, r, s) = E[(Y_k - \mu)(Y_{k+h} - \mu)(Y_{k+r} - \mu)(Y_{k+s} - \mu)] - (\gamma_h \gamma_{r-s} + \gamma_r \gamma_{h-s} + \gamma_s \gamma_{h-r})$$

is the fourth order cumulant (Giraitis et al. (2003), Theorem 3.1.). This condition holds, e.g., for linear processes with absolutely summable coefficients.
Remark 2.5. In case that the time series is demeaned or detrended first, again the Brownian motion in the representation of U_2 has to be replaced by the tied-down Brownian motion B^μ or the process B^t.

Again, we have the following corollary for the related stopping time.

Corollary 2.2. Under the conditions of Theorem 2.2 we have

$$N^{-1} \tilde{R}_N \xrightarrow{d} \min\{\kappa \leq s \leq 1 : \tilde{U}_2(s) > c\}, \quad N \to \infty.$$

So far we considered mean-zero time series. The following theorem provides sufficient conditions for a well-defined limit for a $I(0)$ series with a (local) nonparametric trend.

Theorem 2.3. Suppose $\{Y_n\}$ satisfies $Y_n = m_N + u_n, n \in \mathbb{N}, h > 0$, where $\{u_n\}$ satisfies the conditions of Theorem 2.2 (i) with the Y_n replaced by u_n’s, and $\{m_{N,n}\}$ is an array of non-negative constants with $m_{N,n} \leq M$ for all N, n, such that

(i) $N^{-1/2} \sum_{i=1}^{[Ns]} Y_i \Rightarrow \sigma B(s)$, as $N \to \infty$, for some $0 < \sigma < \infty$,

(ii) $\sup_{0 \leq s \leq 1} |N^{-1/2} \sum_{i=1}^{[Ns]} m_{N,i} - \mu(s)| \to 0$, as $N \to \infty$.

for some deterministic drift $\mu(s) \in D[0,1]$, which is continuous at 0. Then

$$[Ns]U_N(s) \Rightarrow U_2^\mu(s) = \frac{1}{sE(Y_1^2)} \zeta \int_0^s [\mu(r) + \sigma B(r)]^2 K(\zeta(r - s)) \, dr, \quad \text{in } D[\kappa,1],$$

as $N \to \infty$. If $\mu \in C[0,1]$, then U_2^μ has continuous sample paths w.p. 1.

Proof. Using Jacod and Shiryaev (2003, VI, Proposition 1.22, p. 329) conditions (i) and (ii) yield $N^{-1/2} \sum_{i=1}^{[Ns]} Y_i \Rightarrow \mu(s) + \sigma B(s)$, in $D[0,1]$, as $N \to \infty$. The proof follows by a simple modification of the proof of the previous theorem by noting that for the denominator we have

$$[Ns]^{-1} \sum_{i=1}^{[Ns]} Y_i^2 = [Ns]^{-1} \sum_{i=1}^{[Ns]} u_i^2 + 2 [Ns]^{-1} \sum_{i=1}^{[Ns]} m_{N,i} u_i + [Ns]^{-1} \sum_{i=1}^{[Ns]} m_{N,i}^2 \xrightarrow{P} EY_1^2,$$
as $N \to \infty$, because $m_{N,i} \leq M$ for all i and N for some constant $M > 0$ implies $N^{-1} \sum_i m_{N,i}^2 \leq M/N^{1/2} \sum_i (m_{N,i}/N^{1/2}) = o(1)$.

We illustrate the conditions (i) and (ii) by a local change-point model, where starting at a change-point $\lfloor N\vartheta \rfloor$ the mean is no longer 0 but positive and induced by a non-negative function $m_0 : \mathbb{R} \to \mathbb{R}^+$. Particularly, (truncated) linear trends as $m_0(x) = ax$ if $x \in [0,1]$ and $m_0(x) = 0$ otherwise for some $a > 0$ are allowed.

Example 2.1. Assume $Y_{N,n} = m_{N,n} + u_n$ with
\[m_{N,n} = m_0([n - \lfloor N\vartheta \rfloor]/N)N^{-1/2}. \]

Here we assume that the function $m_0 : \mathbb{R} \to \mathbb{R}$ satisfies $m(s) = 0$ for $s < 0$, is right-continuous, non-negative with bounded variation, and has at most finitely many jumps. Further, m_0 is assumed to be Lipschitz continuous and bounded between the jumps, and is integrable, i.e., $\int_0^\infty m_0(t) \, dt < \infty$. Finally, we assume that there is some $t^* > 0$ with $m_0(t) > 0$ for $t \in (0,t^*)$. It is easy to see that the conditions (i) and (ii) of Theorem 2.3 are satisfied. The limiting mean function is given by
\[\mu(s) = \int_0^s m_0(r - \vartheta) \, dr, \]
and one obtains
\[N^{-1/2} \sum_{i=1}^{\lfloor Ns \rfloor} Y_{N,i} \Rightarrow \int_0^s m_0(r - \vartheta) \, dr + \sigma B(s), \]
as $N \to \infty$.

Remark 2.6. By making use of the Karhunen-Loève representation
\[B(t) \overset{d}{=} \sqrt{2} \sum_{n=0}^{\infty} \frac{\sin((n - 1/2)\pi t)}{(n - 1/2)\pi} Z_n, \quad t \in [0,1], \]
where $\{Z_n\}$ are i.i.d. $N(0,1)$-random variables, cf. Ito and Nisio (1968), we also represented the limiting distributions as simple rational functions of infinite quadratic forms of the type
\[\sum_{n,m=0}^{\infty} \gamma_{mn}(s) Z_n Z_m. \]
Following a referee, we omit these results here, since we did not use them for our simulations.

2.3. Asymptotics for local-to-unity processes. Let us now consider the asymptotic behaviour of U_N under a model which is nearly $I(1)$. More precisely, we consider a sequence of models which converges to an $I(1)$ model yielding what is called local-to-unity asymptotics. The local-to-unity model assumes that we are given an array $\{Y_{N,n} : N \in \mathbb{N}, n \in \mathbb{N}\}$ satisfying

\begin{equation}
Y_{N,n+1} = (1 + a/N)Y_{N,n} + u_n, \quad 1 \leq n \leq N, \; N \in \mathbb{N},
\end{equation}

where $a \in \mathbb{R}$ and $\{u_n\}$ is a $I(0)$ process. Thus, $\{Y_{N,n}\}$ converges to a random walk, as $N \to \infty$. Note that both positive and negative values for a are allowed. Under the local-to-unity model an Ornstein-Uhlenbeck process appears in the limit process instead of the Brownian motion. It has been proposed in the literature to use estimates for a and to use the corresponding asymptotic distributions under the local-to-unity asymptotics as approximations. The analyses of Stock and Watson (1998, Table 7) for the US annual series of the GDP, consumption, and investment imply estimates for a in the region between -15 and -3.

The following theorem contains Breitung (2002, Proposition 4, p. 350) as a special case.

Theorem 2.4. Assume the local-to-unity model (9) holds. Then

\[
U_N(s) \Rightarrow U_Z(s) = \frac{\zeta s^{-1} \int_0^s (\int_0^r Z(t; a) \, dt)^2 K(\zeta(s-r)) \, dr}{\int_0^s Z(r; a)^2 \, dr},
\]

in $D[\kappa, 1]$, as $N \to \infty$, where

\[
Z(s; a) = \int_0^s e^{a(s-r)} dB(r), \quad s \in [0, 1],
\]

is an Ornstein-Uhlenbeck process. Further,

\[
N^{-1} R_N \overset{d}{\to} \min\{\kappa \leq s \leq 1 : U_Z(s) < c\}, \quad N \to \infty.
\]
Remark 2.7. The stochastic integral appearing here is of the type \(I(s) = \int_0^s F(s, r) B(dr), \) \(F(s, r) \) non-stochastic, strictly monotone in \(r \) and bounded with bounded variation. It is a special case of the Ito integral. However, since the Stieltjes integral \(I \) where

\[
\int_0^s B(r) F(s, dr) = F(s, r) B(r)|_{r=0}^{r=s} - \int_0^s F(s, r-) B(dr),
\]

where \(F(s, r-) = \lim_{r \uparrow r} F(s, r) \). For this approach see Shorack and Wellner (1986, p. 127) or Gill (1989, p. 110).

Proof. Put \(W_n = \sum_{i=1}^n u_i, n \in \mathbb{N}, \) and \(S_N(s) = N^{-1/2} \sum_{i=1}^{[Ns]} u_i, s \in [0, 1] \). By assumption \(S_N(s) \Rightarrow \sigma B(s) \) in \(D[0, 1] \), as \(N \to \infty \). We may assume \(\sigma = 1 \). Note that \(N^{-1/2} Y_{N,[Ns]} \) can be written as a stochastic Stieltjes integral, namely

\[
N^{-1/2}Y_{N,[Ns]} = N^{-1/2} \sum_{i=1}^{[Ns]} (1 + a/N)^{[Ns]^{-i}} u_i
\]

where the integrand, \(e_N(r; s) = (1 + a/N)^{[Ns]^{-i} - Nr} \), \((r,s) \in I = \{ (u,v) \in [0,1]^2 : 0 \leq u \leq v, 0 \leq v \leq 1 \} \), is a step function in \(r \). The fact that \(\log[(1 + a/N)^{[Ns]^{-i} - Nr}] = a\sigma(\sigma - r) + o(1) \) uniformly in \((r,s) \in I \) implies that \(e_N(r; s) \) converges uniformly in \((r,s) \in I \) to \(e(r,s) = e^{a(s-r)} \). Particularly, there is some constant \(C \) such that \(|e_N(r; s)| \leq C \) for all \((r,s) \in I \). Further, since for \(a < 0 \) and fixed \(s \in [0, 1] \), the variation \(\int |de_N(\cdot; s)| \) of \(e_N(r; s) \) as a function of \(r \in [0, s] \) is given by

\[
\int |de_N(\cdot; s)| = \sum_{i=0}^{[Ns]^{-1}} [e_N((i + 1)/N; s) - e_N(i/N; s)]
\]

\[
= (1 + a/N)^{[Ns]^{-i} - Nr} - (1 + a/N)^{[Ns]} \to e^{a(s-r)} - e^{as}.
\]

It follows that \(\sup_{s \in [0,1]} \int |de_N(\cdot; s)| < \infty \). To estimate

\[
\sup_{s \in [0,1]} \left| \int_0^s e_N(s,r) dS_{N}(r) - \int_0^s e^{a(s-r)} dB(r) \right|
\]

\[18\]
we use the decomposition

\[
\int_0^s e_N(r; s) \, dS_N(r) - \int_0^s e(r; s) \, dB(r) = \int_0^s (e_N(r; s) - e(r; s)) \, dB(r) + \int_0^s e_N(r; s) \, d(S_n(r) - B(r)).
\]

Of course,

\[
\sup_{s \in [0, 1]} \left| \int_0^s e_N(r; s) \, dB(r) - \int_0^s e(r; s) \, dB(r) \right| \to 0,
\]
as \(N \to \infty\), see, e.g., Shorack and Wellner (1986, p. 130). Integration by parts yields

\[
\sup_{s \in [0, 1]} \left| \int_0^s e_N(r; s) \, d(S_N(r) - B(r)) \right| \leq 2C \|S_N - B\|_{\infty} + \|S_N - B\|_{\infty} \sup_{s \in [0, 1]} \left| \int d\epsilon_N(\cdot; s) \right|.
\]

These estimates imply

\[
N^{-1/2} Y_{N,N_a} = \int_0^s e_N(r; s) \, dS_N(r) \Rightarrow \int_0^s e^a(s-r) \, dB(r) = \mathcal{Z}(s; a),
\]
as \(N \to \infty\). We obtain

\[
V_{N1}(s) = \frac{N^2}{[Ns]^2} N^{-2} \sum_{i=1}^{|Ns|} Y_{N,i}^2
\]

\[
= \frac{N^2}{[Ns]^2} \int_0^s (N^{-1/2} Y_{N,N_t})^2 \, dr
\]

\[
\Rightarrow \sigma^2 s^{-2} \int_0^s \mathcal{Z}(r; a)^2 \, dr = V_1(s),
\]
in \(D[\kappa, 1]\), as \(N \to \infty\), and, using the same arguments as in the proof of Theorem 2.1

\[
V_{N2}(s) = \frac{N^3}{[Ns]^3} N^{-3} \sum_{i=1}^{|Ns|} \left(\sum_{j=1}^i Y_{N,j} \right)^2 K_h(t_i - t_{[Ns]})
\]

\[
= \frac{N^3}{[Ns]^3} N^{-2} \int_0^s \left(\sum_{j=1}^{|N_r|} Y_{N,j} \right)^2 K_h(t_{[Nr]} - t_{[Ns]}) \, dr
\]

\[
= \frac{N^3}{[Ns]^3} Nh^{-1} \int_0^s \left(\int_0^r N^{-1/2} Y_{N,N_t} \, dt \right)^2 K(\lfloor Nr \rfloor / h - \lfloor Ns \rfloor / h) \, dr
\]

\[
\Rightarrow \zeta \sigma^2 s^{-3} \int_0^s \left(\int_0^r \mathcal{Z}(t; a) \, dt \right)^2 K(\zeta(s-r)) \, dr = V_2(s),
\]
in $D[\kappa, 1]$, as $N \to \infty$. Noting that V_{N1} and V_{N2} are functionals of $N^{-1/2}Y_{N,\lfloor Ns \rfloor}$ up to negligible terms, we obtain $(V_{N1}, V_{N2}) \Rightarrow (V_1, V_2)$, as $N \to \infty$. Hence the CMT yields the assertion. □

3. Change-point models

The question arises how the sequential processes and stopping times considered above behave under a change-point model where after a certain fraction of the data the time series changes. In this section we consider both change-point models, a change from $I(0)$ to $I(1)$ and a change from $I(1)$ to $I(0)$. To design a monitoring procedure (stopping rule) having well-defined properties under the null hypothesis of no change, the results from the previous section about the asymptotic distribution of $U_N(s)$ (under a $I(1)$ process) and $\lfloor Ns \rfloor U_N(s)$ or $\tilde{U}_N(s)$ (under a $I(0)$ process) apply. In particular, for the $I(0)$-to-$I(1)$ change-point model monitoring can be based on the stopping time \tilde{R}_N calculated from the process $\tilde{U}_N(s)$ which has the well-defined limit $\tilde{U}_2(s)$ for $I(0)$ processes, i.e., under the null hypothesis of no change. To design a stopping rule for a $I(1)$-to-$I(0)$ change-point model one would rely on the stopping time R_N and its asymptotic distribution, which is a functional of $U_1(s)$, the well-defined limit of $U_N(s)$ for $I(1)$ processes.

We will now study the asymptotic laws under the general case of a change, i.e., under the alternative hypothesis that a change-point exists. For both change-point models the integrated subseries of the time series Y_1, \ldots, Y_N determines the proper scaling, since in both models $U_N(s)$ has a well-defined limit, whereas $\lfloor Ns \rfloor U_N(s)$ is degenerated. In this sense, the change-point problems are qualitatively different and the situation is not symmetric. The $I(1)$-to-$I(0)$ is smoother in the sense that the same process can be considered to study the behaviour under the no-change hypothesis and the alternative of a change-point, whereas for the $I(0)$-to-$I(1)$ problem the scaling has to be changed.

3.1. A change from $I(0)$ to $I(1)$. Let us assume that the time series is a mean-zero fourth-order $I(0)$ process satisfying condition (7) at the beginning, but becomes a random walk, i.e., $I(1)$ process, starting at the time point $\lfloor N\vartheta \rfloor$, where $\vartheta \in (0, 1)$. We consider
the following change-point model. Let \(\{ u_n : n \geq 0 \} \) be a mean-zero weakly stationary \(I(0) \) time series such that all moments of order 4 exists and are stationary, and condition (7) is satisfied when the \(Y_n \) are replaced by \(u_n \)'s. Further assume that

\[
Y_i = \begin{cases} u_i, & i = 1, \ldots, \lfloor N\vartheta \rfloor - 1 \\ Y_{i-1} + u_i, & i = \lfloor N\vartheta \rfloor, \ldots, N. \end{cases}
\]

Then, \(Y_1, \ldots, Y_{\lfloor N\vartheta \rfloor - 1} \sim I(0) \) and \(Y_{\lfloor N\vartheta \rfloor}, \ldots, Y_N \sim I(1), \) i.e., at the change-point \(\lfloor N\vartheta \rfloor \) the time series changes from stationarity to a \(I(1) \) series.

Lemma 3.1. Under the change-point model (10) we have

\[
\int_0^s N^{-1/2}Y_{\lfloor Nt \rfloor} \, dt \Rightarrow \sigma \int_{\min(s, \vartheta)}^s B(t) \, dt, \quad N \to \infty.
\]

in \(D[0, 1] \).

Proof. Define

\[
W_N(s) = \begin{cases} \int_0^s \sqrt{N}Y_{\lfloor Nt \rfloor} \, dt, & 0 \leq s < \vartheta, \\ \int_0^\vartheta \sqrt{N}Y_{\lfloor Nt \rfloor} \, dt + N^{-1/2}(Y_{\lfloor Ns \rfloor} - Y_{\lfloor N\vartheta \rfloor}), & \vartheta \leq s \leq 1. \end{cases}
\]

Then, \(W_N \in D[0, 1] \) for each \(N \in \mathbb{N} \). By construction of \(W_N \), we have \(W_N \Rightarrow \sigma B, \ N \to \infty \), in \(D[0, 1] \), if (10) holds. By the Dudley/Skorohod/Wichura representation theorem in general metric spaces, there exists a probability space with equivalent versions \(\tilde{W}_N \) and \(\tilde{B} \) such that \(d(\tilde{W}_N, \tilde{B}) \to 0 \) a.s, for \(N \to \infty \). Since \(\tilde{B} \in C[0, 1] \), we even have \(\|\tilde{W}_N - \tilde{B}\|_\infty \to 0 \) a.s., \(N \to \infty \). Thus, we may assume

\[
\sup_{0 \leq s \leq \vartheta} \left| N^{1/2} \int_0^s Y_{\lfloor Nt \rfloor} \, dt - \sigma B(s) \right| \overset{a.s.}{\to} 0, \quad N \to \infty,
\]

and

\[
\sup_{\vartheta \leq s < 1} \left| N^{-1/2}(Y_{\lfloor Ns \rfloor} - Y_{\lfloor N\vartheta \rfloor}) - \sigma [B(s) - B(\vartheta)] \right| \overset{a.s.}{\to} 0, \quad N \to \infty.
\]

Note that for \(\vartheta \leq s \leq 1 \) we have

\[
\int_0^s N^{-1/2}Y_{\lfloor Nt \rfloor} \, dt = N^{-1} \int_0^\vartheta N^{1/2}Y_{\lfloor Nt \rfloor} \, dt + \int_0^s N^{-1/2}(Y_{\lfloor Nt \rfloor} - Y_{\lfloor N\vartheta \rfloor}) \, dt + N^{-1/2}Y_{\lfloor N\vartheta \rfloor}(s - \vartheta),
\]
which should be close to \(\sigma B(s)/N + \sigma \int_0^s B(t) \, dt \), whereas for \(0 \leq s < \vartheta \) the second and third term vanish. Indeed, if we define the \(D[0,1] \)-valued process
\[
A_N(s) = \begin{cases}
\sigma B(s)/N, & 0 \leq s < \vartheta, \\
\sigma B(\vartheta)/N + \sigma \int_0^s B(t) \, dt, & \vartheta \leq s \leq 1,
\end{cases}
\]
and observe that \(A_N(s) \Rightarrow A(s; \vartheta) \), as \(N \to \infty \), where
\[
A(s; \vartheta) = \sigma \int_{\min(s, \vartheta)}^s B(t) \, dt, \quad 0 \leq s \leq 1,
\]
we obtain the estimate
\[
\sup_{s \in [0,1]} \left| \int_0^s N^{-1/2} Y_{[Nt]} \, dt - A_N(s) \right| \leq N^{-1} \sup_{s \in [0,\vartheta]} \left| \int_0^s N^{1/2} Y_{[Nt]} \, dt - \sigma B(s) \right| + N^{-1} \sup_{s \in [\vartheta,1]} \left| \int_0^\vartheta N^{1/2} Y_{[Nt]} \, dt - \sigma B(\vartheta) \right| \\
+ \sup_{s \in [\vartheta,1]} \left| \int_\vartheta^s N^{-1/2} \{ Y_{[Nt]} - Y_{[N\vartheta]} \} \, dt - \int_\vartheta^s \sigma B(t) \, dt \right| \\
+ \sup_{s \in [\vartheta,1]} \left| N^{-1/2} Y_{[N\vartheta]} (s - \vartheta) \right| \overset{a.s.}{\to} 0,
\]
as \(N \to \infty \). Whereas the first three terms are obvious, let us consider the last one. According to (10) we have
\[
m_4 = E|Y_{[N\vartheta]}|^4 = E|u_{[N\vartheta]} - 1 + u_{[N\vartheta]}|^4 < \infty,
\]
since \(E|u_1|^4 < \infty \) by assumption. Therefore,
\[
E \left(\sup_{s \in [\vartheta,1]} \left| N^{-1/2} Y_{[N\vartheta]} (s - \vartheta) \right| \right)^4 = E(N^{-1/2}|Y_{[N\vartheta]}|(1 - \vartheta))^4 \leq \frac{m_4(1 - \vartheta)^4}{N^2}.
\]
By Markov’s inequality we can conclude that for any \(\varepsilon > 0 \)
\[
\sum_{N=1}^\infty P \left(\sup_{s \in [\vartheta,1]} \left| N^{-1/2} Y_{[N\vartheta]} (s - \vartheta) \right| > \varepsilon \right) \leq \sum_{N=1}^\infty \frac{m_4(1 - \vartheta)^4}{\varepsilon^4 N^2} < \infty.
\]
Now Serfling (1980, Theorem 1.3.4) yields
\[
\sup_{s \in [\vartheta, 1]} |N^{-1/2}Y_{[N\vartheta]}(s - \vartheta)| \xrightarrow{a.s.} 0,
\]
as \(N \to \infty\). The convergence
\[
\sup_{s \in [0, 1]} \left| \int_{0}^{s} N^{-1/2}Y_{[Nt]} dt - A_{N}(s) \right| \xrightarrow{a.s.} 0,
\]
as \(N \to \infty\), implies convergence in the metric \(d\), which in turn implies weak convergence of the original versions, see e.g. Billingsley (1968, Theorem 4.3) or van der Vaart (1998, Theorem 18.10).

Theorem 3.1. Assume the I(0)-to-I(1) change-point model (10) holds. Then for \(U_{N}\) as defined in (3) we have
\[
U_{N}(s) \Rightarrow U_{\vartheta, 1}(s) = \begin{cases}
0, & s \in [0, \vartheta), \\
\frac{s^{-3} \int_{\vartheta}^{s} 1(r \geq \vartheta) [\int_{\vartheta}^{r} B(t) dt]^{2} K(\zeta(r - s)) dr}{\int_{\vartheta}^{s} 1(r \geq \vartheta) [B(t) + B(\vartheta)]^{2} dt}, & s \in [\vartheta, 1],
\end{cases}
\]
as \(N \to \infty\), yielding
\[
N^{-1}R_{N} \stackrel{d}{\Rightarrow} \min\{\kappa \leq s \leq 1 : U_{\vartheta, 1}(s) > c\},
\]
as \(N \to \infty\).

Proof. An easy application of Lemma 3.1 yields for the numerator of \(U_{N}\)
\[
[Ns]^{-3} \sum_{i=1}^{[Ns]} \left(\sum_{j=1}^{i} Y_{j} \right)^{2} K_{h}(t_{i} - t_{[Ns]}) = \frac{N^{3}}{[Ns]^{3}} \frac{1}{h} \int_{0}^{s} \left(\int_{0}^{r} N^{-1/2}Y_{[Nt]} dt \right)^{2} K([N\varrho] - [Ns])/h)
\]
\[
\Rightarrow s^{-3} \int_{\vartheta}^{s} \left[\sigma \int_{\vartheta}^{r} B(t) dt \right]^{2} K(\zeta(r - s)) dr,
\]
in \(D[\kappa, 1]\), as \(N \to \infty\). Since for \(s \geq \vartheta\)
\[
[Ns]^{-2} \sum_{i=[N\vartheta]}^{[Ns]} Y_{i}^{2} = \frac{N^{2}}{[Ns]^{2}} N^{-1} \int_{\vartheta}^{s} Y_{[Nt]} dt \Rightarrow s^{-2} \int_{\vartheta}^{s} [B(t) + B(\vartheta)]^{2} dt,
\]
as $N \to \infty$, and, by stationarity of $Y_1, \ldots, Y_{\lfloor N\vartheta \rfloor - 1}$, $N^{-1} \sum_{i=1}^{\lfloor Ns \rfloor} Y_i^2 \to s\sigma^2$ if $s < \vartheta$, for the denominator of U_N we obtain

$$[Ns]^{-2} \sum_{i=1}^{\lfloor Ns \rfloor} Y_i^2 \Rightarrow 1(s \geq \vartheta)s^{-2}\sigma^2 \int_{\vartheta}^{s} [B(t) + B(\vartheta)]^2 dt,$$

in $D[\kappa, 1]$, as $N \to \infty$. Note that the denominator is positive w.p. 1. Using the arguments given in detail in the proof of Theorem 2.1 and applying the CMT yields the assertions.

3.2. A change from $I(1)$ to $I(0)$. Now assume that the first part of the time series is a random walk, i.e. $I(1)$, and changes to a $I(0)$ process at the change-point $\lfloor N\vartheta \rfloor$ for some fixed constant $\vartheta \in (0, 1)$, i.e.,

$$(11) \quad Y_i = \begin{cases} \sum_{j=0}^{i} u_j, & i = 0, \ldots, \lfloor N\vartheta \rfloor - 1, \\ \eta u_i, & i = \lfloor N\vartheta \rfloor, \ldots, N, \end{cases}$$

Here $\eta > 0$ is a scale parameter, which is briefly discussed at the end of this section, and \{u_n\} is a weakly stationary mean zero $I(0)$ time series satisfying condition (7).

Model (11) implies that the variance function is linear with positive slope before the change and constant after the change.

Lemma 3.2. Assume the change-point model (11) holds. Then we have

$$\int_{0}^{s} N^{-1/2} Y_{\lfloor Nt \rfloor} dt \Rightarrow \sigma \int_{0}^{\min(s, \vartheta)} B(t) dt, \quad N \to \infty.$$

Proof. Noting that $N^{-1/2} Y_{\lfloor Nt \rfloor} \Rightarrow \sigma B(t)$ if $t < \vartheta$, $\int_{\vartheta}^{s} N^{-1/2} Y_{\lfloor Nt \rfloor} dt \Rightarrow \eta \sigma [B(s) - B(\vartheta)]$ if $\vartheta \leq s \leq 1$, and

$$\int_{0}^{s} N^{-1/2} Y_{\lfloor Nt \rfloor} dt = \int_{0}^{\vartheta} N^{-1/2} Y_{\lfloor Nt \rfloor} dt + N^{-1} \int_{\vartheta}^{s} N^{-1/2} Y_{\lfloor Nt \rfloor} dt,$$

if $\vartheta \leq s \leq 1$, the lemma is shown analogously to Lemma 3.1, if we define the $D[0, 1]$-valued process

$$\tilde{Z}_N(s) = \begin{cases} \sigma \int_{0}^{s} B(t) dt, & 0 \leq s < \vartheta, \\ \sigma \int_{0}^{\vartheta} B(t) dt + \sigma \eta/N[B(s) - B(\vartheta)], & \vartheta \leq s \leq 1, \end{cases}$$

24
and note that $\tilde{Z}_N(s) \Rightarrow \sigma \int_0^{\min(s,\vartheta)} B(t) \, dt$. Note that this limit process does not depend on η. \qed

Theorem 3.2. Under the $I(1)$-to-$I(0)$ change-point model (11) we have

$$U_N(s) \Rightarrow U_{10,\vartheta}(s) = \frac{s^{-1} \zeta \int_0^s (\int_0^{\min(r,\vartheta)} B(t) \, dt)^2 K(\zeta(r - s)) \, dr}{\int_0^{\min(s,\vartheta)} B(t)^2 \, dt},$$

as $N \to \infty$, yielding

$$N^{-1} R_N \xrightarrow{d} \min \{ \kappa \leq s \leq 1 : U_{10,\vartheta}(s) > c \},$$

as $N \to \infty$.

Proof. The theorem is proved using the same approach as in Theorem 3.1. We indicate the differences. First note that by Lemma 3.2

$$[Ns]^{-3} \sum_{i=1}^{[Ns]} \left(\sum_{j=1}^{i} Y_j \right)^2 \Rightarrow \frac{N^3}{[Ns]^3} h \int_0^s \left(\int_0^r N^{-1/2} Y_{[Ns]} \, dt \right)^2 K([Nr] - [Ns])/h) \, dr \Rightarrow \frac{s^{-1} \zeta}{\int_0^s (\int_0^{\min(r,\vartheta)} B(t) \, dt)^2 K(\zeta(r - s)) \, dr},$$

as $N \to \infty$. To handle the denominator of U_N observe that

$$\left\{ \int_0^s N^{-1} Y_{[Ns]}^2 \, dt : 0 \leq s < \vartheta \right\} \Rightarrow \left\{ \sigma^2 \int_0^s B(t)^2 \, dt : 0 \leq s < \vartheta \right\}.$$

For $s \geq \vartheta$ we obtain

$$[Ns]^{-2} \sum_{j=1}^{[Ns]} Y_j^2 = \frac{N^2}{[Ns]^2} \left[N^{-1} \sum_{j=1}^{[N\vartheta]} Y_j^2 + N^{-2} \eta^2 \sum_{j=[N\vartheta]}^{[Ns]} u_j^2 \right] \Rightarrow s^{-2} \sigma^2 \int_0^\vartheta B(t)^2 \, dt$$

yielding

$$\left\{ [Ns]^{-2} \sum_{j=1}^{[Ns]} Y_j^2 : s \in [0, 1] \right\} \Rightarrow \left\{ s^{-2} \sigma^2 \int_0^{\min(s,\vartheta)} B(t)^2 \, dt : s \in [0, 1] \right\},$$

as $N \to \infty$.

Remark 3.1. Note that $U_{10,\vartheta}$ does not depend on η. Hence, the detection procedure given by R_N is asymptotically robust w.r.t. changes of the variance.
4. Simulations

We perform Monte Carlo simulations to investigate the actual finite sample performances of the proposed monitoring procedure. We first consider the statistical properties of the procedures, if the time series is either \(I(0) \) or \(I(1) \). In a second step we study the performance under change-point models. All simulations are based on 50,000 repetitions.

4.1. Models without change-point (either \(I(0) \) or \(I(1) \)). The first model we use for the simulations is as in Stock (1994a), an AR(1) process with MA(1) errors,

\[
Y_0 = 0, \quad Y_n = \phi Y_{n-1} + e_n - \beta e_{n-1}, \quad n = 1, \ldots, N,
\]

where \(\phi \) and \(\beta \) are parameters and \(\{e_n\} \) i.i.d. \(\mathcal{N}(0,1) \) innovations. The parameter values were chosen to be \(\phi = 1, 0.95, 0.9, 0.7 \) and \(\beta = -0.8, -0.5, 0, 0.5, 0.8 \). We investigate the following quantities: Firstly, size and power of the test which rejects \(H_0 \) if the monitoring procedure gives a signal. Second, the average run length (ARL) defined as \(E(R_N) \) and \(E(\tilde{R}_N) \), respectively, i.e., the average number of observations until we get a signal. Additionally, we provide the conditional ARL given that the procedure gives a signal (CARL) defined as, e.g., \(E(R_N|R_N < N) \). That quantity informs us how fast the procedure reacts if it reacts at all. We use a maximum sample size of \(N = 250 \). The bandwidth was chosen as \(h = 50 \). Simulated asymptotic critical values were used with \(\zeta = N/h = 5 \) to attain a nominal rejection probability of 5%. The Gaussian and Epanechnikov kernels were investigated, which attach smaller weights to past summands than to more current ones. We found by simulations not reported here that the start of monitoring, \(k \), should be proportional to \(h \), and \(k = 1.5h \) yields a reasonable rule of thumb for \(\zeta = 5 \).

Table 1 presents our results for the proposed procedure \(R_N \) to detect stationarity, using the Epanechnikov kernel for weighting. Here \(H_0 : I(1) \)-unit root is given by \(\phi = 1 \). The results are generally supportive of the theory developed in the paper. We do not report the results for the Gaussian kernel, since they were quite similar. The first three rows present the actual sizes for different values of \(\beta \). It can be seen that there is only a slight size distortion, similar as for the KPSS fixed-sample test. The remaining rows provide power
estimates, CARLs, and ARLs. Overall, it appears that the monitoring approach provides a powerful method to detect quickly stationarity, as can be seen from the CARL values in parentheses. In many cases stationarity can be detected very early and it is not necessary to wait until the time horizon N.

We next consider the properties of the procedure \tilde{R}_N to detect a unit root. Here $H_0 : I(0)$-stationarity corresponds to $|\phi| < 1$ in our simulation model. For the Newey-West estimator we have to choose the lag truncation parameter m. We considered the following choices of m as a function of the (current) sample size: $m_3 = \lfloor 0.75n^{1/3} + 0.5 \rfloor$, $m_4 = \lfloor 4(n/100)^{1/4} + 0.5 \rfloor$, and $m_{12} = \lfloor 12(n/100)^{1/4} + 0.5 \rfloor$ with $n = \lfloor N\kappa \rfloor, \ldots, R_N \leq N$ denoting the time point where the estimator has to be calculated. The rules m_4 and m_{12} have also been used by Kwiatkowski et al. (1992), for m_3 see Stock and Watson (2003, eq. 13.17). For $\phi = 0$ and $\beta = -0.8, -0.5, 0, 0.5$ we simulated the type I error for all choices of m. As can be seen from the top rows of Table 2, the difference seems negligible. For the remaining cases given by $\phi = 0.2, 0.6, 0.9, 1$ we used m_4. The last three rows of the table provide the performance to detect the unit root given by $\phi = 1$. Overall, the empirical rejection rates and ARL/CARL values indicate that for moderate positive autocorrelation ($0 \leq \phi \leq 0.6$) the procedure has moderate size distortion. But, as expected, for ϕ close to 1 the procedure overreacts. The power is uniformly high for all values of β studied here.

4.2. Change-point models. We also investigated the performance of the detection methods R_N and \tilde{R}_N in change-point models. Of particular interest is to study the influence of the bandwidth h on the performance. To evaluate the rule R_N (detection of stationarity), we used the following specification of the change-point model given in the introduction,

$$Y_n = \phi_n Y_{n-1} + \epsilon_n \quad \text{where} \quad \begin{cases}
\phi_n = 1, & n = 1, \ldots, \lfloor N\vartheta \rfloor - 1, \\
\phi_n = 0.5, & n = \lfloor N\vartheta \rfloor, \ldots, N,
\end{cases}$$

with $N = 250$. $\{\epsilon_t\}$ are i.i.d. $N(0, 1)$-innovations. The change-point parameter ϑ is chosen as $\vartheta = 0.1, 0.5, 0.75$, and the bandwidth as $h = 125, 50, 25.$
Table 3 reports power, the average delay, defined as $E \max(R_N - \lfloor N\vartheta \rfloor, 0)$, and the conditional average delay given the method provides a signal, defined as $E(R_N | R_N < N) - \lfloor N\vartheta \rfloor$, which informs us how quickly the procedure reacts if it reacts at all. It can be seen that there is only a negligible effect of the bandwidth h on the average delay, but a remarkable positive effect on the conditional average delay and the statistical power to reject the unit root hypothesis. Comparing $h = 125$ with $h = 50$ for $\vartheta = 0.1$ and $\vartheta = 0.5$ indicates that large bandwidths provide high overall power but the signal often comes late. To detect the change early smaller bandwidths seem to be better. Comparing with $h = 10$ shows that CARL increases again. It seems, that for the setting studied here values between 25 and 50 provide reasonable results.

To investigate the detection rule \tilde{R}_N (detection of a unit root), we used the same changepoint model as above, but with $\phi_n = 0.6$ if $n < \lfloor N\vartheta \rfloor$ and $\phi_n = 1$ if $n \geq \lfloor N\vartheta \rfloor$. This means, before the change the process is $AR(1)$ with autoregressive parameter 0.6, and after the change we are given a pure random walk. The parameter ϑ was chosen as above and $h = 125, 50, 25, 10$. As can be seen from Table 4, the detection performance is excellent in terms of power, average delay, and conditional average delay. Results for $h = 5$ were almost identical to $h = 10$ and are therefore omitted. Overall, small bandwidths increase the power substantially and yield smaller delays.

4.3. An example. Figure 1 illustrates the detection performance of the proposed procedure for a time series of length 250 which has a change-point. The first 100 observations follow an $AR(1)$ with coefficient $\phi = 0.8$. After the change-point given by $\vartheta = 0.4$, the series is a random walk ($\phi = 1$). We applied the procedure \tilde{R}_N using the Epanechnikov kernel, bandwidth $h = 25$, the lag selection rule $m4$, and an asymptotic 5% control limit using $\zeta = 10$. The change is detected at obs. 167.
Figure 1. A time series with a change-point at obs. 100 where the AR coefficient changes from 0.8 to 1. The change is detected at obs. 161.

5. Software

User-friendly and platform independent JAVA software implementing the proposed methods, particularly providing asymptotic control limits, and example data sets can be downloaded from the author’s webpage.

6. Conclusions

Monitoring rules to detect quickly stationarity and unit roots based on a kernel-weighted process related to the KPSS statistics are studied. Limiting distributions under various distributional assumptions including local-to-unity and change-point models are established. Simulations indicate that the procedures share the moderate size distortion of the KPSS
test, but due to its weighting scheme controlled by a bandwidth parameter h the reaction performance is substantially improved. Both, changes from $I(0)$ to $I(1)$ and changes from $I(1)$ to $I(0)$ can be detected in many cases very early, if h is chosen appropriately.

Acknowledgements

The financial support of the DFG (Deutsche Forschungsgemeinschaft, SFB 475, *Reduction of Complexity in Multivariate Data Structures*) is gratefully acknowledged. I thank two anonymous referees for constructive and helpful remarks which improved the article, and Sabine Teller for proof-reading a revised version.
<table>
<thead>
<tr>
<th>φ [lag rule]</th>
<th>0.8</th>
<th>0.5</th>
<th>0</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 [m3]</td>
<td>0.036</td>
<td>0.035</td>
<td>0.023</td>
<td>0.001</td>
</tr>
<tr>
<td>0 [m4]</td>
<td>0.033</td>
<td>0.031</td>
<td>0.022</td>
<td>0.002</td>
</tr>
<tr>
<td>0 [m12]</td>
<td>0.016</td>
<td>0.017</td>
<td>0.017</td>
<td>0.005</td>
</tr>
<tr>
<td>0.2</td>
<td>0.039</td>
<td>0.038</td>
<td>0.03</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>[173.2]</td>
<td>[173.3]</td>
<td>[173.7]</td>
<td>[174.8]</td>
</tr>
<tr>
<td>0.6</td>
<td>0.082</td>
<td>0.083</td>
<td>0.074</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>[170.4]</td>
<td>[170.3]</td>
<td>[171]</td>
<td>[173.2]</td>
</tr>
<tr>
<td>0.9</td>
<td>0.396</td>
<td>0.399</td>
<td>0.391</td>
<td>0.358</td>
</tr>
<tr>
<td></td>
<td>[140]</td>
<td>[139.7]</td>
<td>[140.6]</td>
<td>[144.9]</td>
</tr>
<tr>
<td>1</td>
<td>0.952</td>
<td>0.953</td>
<td>0.955</td>
<td>0.951</td>
</tr>
<tr>
<td></td>
<td>(51.3)</td>
<td>(51.3)</td>
<td>(51.3)</td>
<td>(51)</td>
</tr>
<tr>
<td></td>
<td>[57.2]</td>
<td>[57.1]</td>
<td>[56.9]</td>
<td>[57.1]</td>
</tr>
</tbody>
</table>

Table 2. Detecting unit roots using R_N with $ζ = 5$: Empirical size respectively power, CARL given a signal (in parentheses), and ARL (in brackets), for various values of $φ$ (AR parameter) and $β$ (MA parameter).

References

<table>
<thead>
<tr>
<th>ϑ</th>
<th>0.1</th>
<th>0.5</th>
<th>0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h = 125$</td>
<td>0.385</td>
<td>0.072</td>
<td>0.066</td>
</tr>
<tr>
<td></td>
<td>(133.2)</td>
<td>(54.6)</td>
<td>(41.7)</td>
</tr>
<tr>
<td></td>
<td>[189.7]</td>
<td>[119.9]</td>
<td>[60.3]</td>
</tr>
<tr>
<td>$h = 50$</td>
<td>0.293</td>
<td>0.051</td>
<td>0.055</td>
</tr>
<tr>
<td></td>
<td>(112.6)</td>
<td>(39.4)</td>
<td>(21.7)</td>
</tr>
<tr>
<td></td>
<td>[192]</td>
<td>[120.2]</td>
<td>[60.1]</td>
</tr>
<tr>
<td>$h = 25$</td>
<td>0.247</td>
<td>0.041</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>(113.5)</td>
<td>(37.4)</td>
<td>(15.4)</td>
</tr>
<tr>
<td></td>
<td>[197.4]</td>
<td>[120.9]</td>
<td>[60.4]</td>
</tr>
<tr>
<td>$h = 10$</td>
<td>0.208</td>
<td>0.031</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>(117.3)</td>
<td>(40)</td>
<td>(13.8)</td>
</tr>
<tr>
<td></td>
<td>[202.6]</td>
<td>[121.9]</td>
<td>[60.8]</td>
</tr>
</tbody>
</table>

Table 3. Change from $I(1)$ to $I(0)$: Empirical rejection rates, conditional average delay (in parentheses), and unconditional average delay (in brackets).

\[
\begin{array}{cccc}
\vartheta \\
0.1 & 0.5 & 0.75 \\
\h = 125 & 0.94 & 0.744 & 0.155 \\
& (123.7) & (87.9) & (49.7) \\
& [129.8] & [97.4] & [58.5] \\
\h = 50 & 0.966 & 0.854 & 0.468 \\
& (103.2) & (74) & (49.4) \\
\h = 25 & 0.972 & 0.895 & 0.628 \\
& (94.8) & (65) & (44.3) \\
\h = 10 & 0.974 & 0.913 & 0.702 \\
& (89.8) & (58.2) & (39.4) \\
& [93.4] & [63.1] & [43.8] \\
\end{array}
\]

Table 4. Change from \(I(0)\) to \(I(1)\): Empirical rejection rates, conditional average delay (in parentheses), and unconditional average delay (in brackets).

35