Zum Inhalt.

RWTH LogoInstitut für Statistik und Wirtschaftsmathematik

Publikationsliste

Buchkapitel (Sortieren nach: Erscheinungsdatum | Titel)
Gather, U., Kamps, U. & Schweitzer, N. (1998). Characterizations of distributions via identically distributed functions of order statistics. In: N. Balakrishnan & R.C. Rao (Hrsg.), Handbook of Statistics, Vol. 16, Order Statistics and Their Applications (S.257-290). Amsterdam: Elsevier.
Kamps, U. (1998). Characterizations of distributions by recurrence relations and identities for moments of order statistics. In: N. Balakrishnan & C.R. Rao (Hrsg.), Handbook of Statistics, Vol. 16, Order Statistics and Their Applications (S.291-311). Amsterdam: Elsevier.
Cramer, E. & Kamps, U. (1998). Maximum likelihood estimation with different sequential k-out-of-n systems. In: W. Kahle et al. (Hrsg.), Advances in Stochastic Models for Reliability, Quality and Safety (S.101-111). Boston: Birkhäuser.
Cramer, E. & Kamps, U. (2001). Sequential k-out-of-n systems. In: N. Balakrishnan & C.R. Rao (Hrsg.), Handbook of Statistics, Vol. 20, Advances in Reliability (S.301-372). Amsterdam: Elsevier.
Cramer, E. & Kamps, U. (2005). Characterization of the exponential distribution by conditional expectations of generalized spacings. In: N. Balakrishnan, I.G. Bairamov & O.L. Gebizlioglu (Hrsg.), Advances on Models, Characterizations, and Applications (S.83-96). Boca Raton: Taylor&Francis.
Burkschat, M., Cramer, E. & Kamps, U. (2007). Linear Estimation of Location and Scale Parameters Based on Generalized Order Statistics from Generalized Pareto Distributions. In: M. Ahansullah & M. Raqab (Hrsg.), Recent Developments in Ordered Random Variables (S.253-262). Hauppauge: Nova Science.
Beutner, E. & Kamps, U. (2008). Models of ordered data and products of beta random variables. In: B.C. Arnold, N. Balakrishnan, J.M. Sarabia & R. Mínguez (Hrsg.), Advances in Mathematical and Statistical Modeling (S.101-106). Boston: Birkhäuser.
Kateri, M., Kamps, U. & Balakrishnan, N. (2011). Step-stress testing with multiple samples: The exponential case. In: N. Balakrishnan (Hrsg.), Methods and Applications of Statistics in Engineering, Quality Control, and the Physical Sciences (S.644-665). Hoboken: Wiley.
Burkschat, M., Kamps, U. & Kateri, M. (2015). Estimation in a model of sequential order statistics with ordered hazard rates. In: P. Choudhary, C. Nagaraja & H.K.T. Ng (Hrsg.), Ordered Data Analysis, Models and Health Research Methods (S.105-119). New York: Springer.
Bücher (Sortieren nach: Erscheinungsdatum | Titel)
Kamps, U. (1995). A Concept of Generalized Order Statistics (210 Seiten). Stuttgart: Teubner.
Cramer, E., Cramer, K., Kamps, U. & Zuckschwerdt, C. (2004). Beschreibende Statistik: Interaktive Grafiken (mit Software Download) (130 Seiten). Heidelberg: Springer.
Kamps, U., Cramer, E., Strauer, D. & Herff, W. (2005). Prüfungsvorbereitung Wirtschaftsmathematik – Analysis (123 Seiten). München: Oldenbourg.
Kamps, U., Cramer, E. & Oltmanns, H. (2009). Wirtschaftsmathematik: Einführendes Lehr- und Arbeitsbuch (1. Aufl. 2001: 444 Seiten, 2. Aufl. 2003, 3. Aufl. 2009: 450 Seiten). München: Oldenbourg.
Cramer, E., Herff, W. & Kamps, U. (2010). Übungen zur Mathematik (2. Aufl.). Aachen: ISW.
Clermont, S., Cramer, E., Jochems, B. & Kamps, U. (2012). Wirtschaftsmathematik, Mathematik-Training zum Studienstart (1. Aufl. 1993: 190 Seiten, 2. Aufl. 1994: 230 Seiten, 3. Aufl. 2001: 324 Seiten, 4. Aufl. 2012: 361 Seiten). München: Oldenbourg.
Burkschat, M., Cramer, E. & Kamps, U. (2012). Beschreibende Statistik: Grundlegende Methoden der Datenanalyse (2. Aufl.) (1. Aufl. 2004: 376 Seiten, 2. Aufl. 2012). Heidelberg: Springer.
Cramer, E., Kamps, U., Kateri, M. & Burkschat, M. (2015). Mathematik für Ökonomen - Kompakter Einstieg für Bachelorstudierende (313 Seiten). München: De Gruyter Oldenbourg.
Cramer, E., Kamps, U., Lehmann, J. & Walcher, S. (2017). Toolbox Mathematik für MINT-Studiengänge. Berlin: Springer Spektrum 2017.
Kamps, U. & Cramer, E. (2018). Grundzüge der Stochastik - Skript für Bachelorstudierende (1. Aufl. 2016, 2. Aufl. 2017, 3. Aufl. 2018: 307 Seiten). Aachen: ISW.
Cramer, E. & Kamps, U. (2019). Klausurtraining Statistik (1. Aufl. 2011, 2. Aufl. 2019). Aachen: ISW.
Cramer, E. & Kamps, U. (2020). Statistik griffbereit: Formelsammlung zur Wahrscheinlichkeitsrechnung und Statistik (1. Aufl. 2006, 2. Aufl. 2007, 3. Aufl. 2008, 4. Aufl. 2010, 5. Aufl. 2013, 6. Aufl. 2020). Aachen: ISW.
Cramer, E. & Kamps, U. (2020). Grundlagen der Wahrscheinlichkeitsrechnung und Statistik (1. Aufl. 2007: 323 Seiten, 2. Aufl. 2008: 325 Seiten, 3. Aufl. 2014: 333 Seiten, 4. Aufl. 2017: 373 Seiten, 5. Aufl. 2020: 394 Seiten). Berlin: Springer Spektrum.
Bedbur, S. & Kamps, U. (2021). Multivariate Exponential Families: A Concise Guide to Statistical Inference (https://www.springer.com/de/book/9783030818999). Cham: Springer Nature.
Encyclopedia Entries (Sortieren nach: Erscheinungsdatum | Titel)
Kamps, U. (1999). Order Statistics, Generalized. In: S. Kotz et al. (Hrsg.), Encyclopedia of Statistical Sciences (Update Vol. 3) (S.553-557). New York: Wiley.
Kamps, U. (1999). Inspection Paradox. In: S. Kotz et al. (Hrsg.), Encyclopedia of Statistical Sciences (Update Vol. 3) (S.364-366). New York: Wiley.
Kamps, U. (2006). Generalized Order Statistics. In: N. Balakrishnan et al. (Hrsg.), Encyclopedia of Statistical Sciences, Vol.4 (S.2731-2737). Hoboken: Wiley.
Kamps, U. (Mitglied eines Autorenkollektivs) (2013). Kompakt-Lexikon Wirtschaftsmathematik und Statistik. Wiesbaden: Springer Gabler.
Kamps, U. (2016). Generalized Order Statistics. In: N. Balakrishnan, P. Brandimarte , B. Everitt, G. Molenberghs, W. Piegorsch & F. Ruggeri (Hrsg.), Wiley StatsRef: Statistics Reference Online (S.1-12). Chichester: Wiley.
Neue Medien (Sortieren nach: Erscheinungsdatum | Titel)
Cramer, E., Cramer, K. & Kamps, U. (2002). e-stat: A web-based learning environment in applied statistics. In: W. Härdle & B. Rönz (Hrsg.), COMPSTAT2002-Proceedings in Computational Statistics (S.309-314). Heidelberg: Physica.
Cramer, K. & Kamps, U. (2002). EMILeA-stat: A web-based learning environment in applied statistics. In: F. Flückinger et al. (Hrsg.), Tagungsband zur 4th International Conference on New Educational Environments (S.). Oberentfelden: Sauerländer AG.
Cramer, E., Cramer, K. & Kamps, U. (2002). Neue Medien für den schulischen Statistikunterricht. Stochastik in der Schule, 22 (3), 23-30
Cramer, K. & Kamps, U. (2003). Statistik multimedial: Das Projekt e-stat. Einblicke, Forschungsmagazin der Carl von Ossietzky Universität Oldenburg, 37, 20-22
Cramer, E., Cramer, K., Janzing, P., Kamps, U. & Pahl, C. (2003). EMILeA-stat: A web-based learning environment in applied statistics with a focus on learning and teaching in secondary schools. Proceedings of the IASE Satellite Conference on Statistics Education and the Internet [CDROM] (S. ). Voorburg: ISI.
Cramer, E., Härdle, W., Kamps, U. & Witzel, R. (2003). e-stat: Views, Methods, Applications. Bulletin of the International Statistical Institute, 54th Session 2003 International Statistical Institute, Berlin (Proceedings, Vol. LX, Book 2) (S.82-85). Voorburg: ISI.
Cramer, K. & Kamps, U. (2003). Interactive graphics for elementary statistical education. Bulletin of the International Statistical Institute, 54th Session 2003 International Statistical Institute, Berlin (Contributed Papers, Vol. LX, Book 1) (S.222-223). Voorburg: ISI.
Cramer, E., Cramer, K., Kamps, U. & Pahl, C. (2004). EMILeA-stat: Multimediales und interaktives Statistiklernen. In: R. Biehler et al. (Hrsg.), Neue Medien und innermathematische Vernetzungen in der Stochastik; Anregungen zum Stochastikunterricht (Band 2) (S.107-126). Hildesheim: Franzbecker.
Cramer, K., Cramer, E. & Kamps, U. (2004). Die elementar-modulare Struktur der Lehr- und Lernumgebung EMILeA-stat. In: U. Rinn & D. Meister (Hrsg.), Didaktik und Neue Medien – Konzepte und Anwendungen in der Hochschule (S.175-191). Münster: Waxmann.
Cramer, E., Cramer, K. & Kamps, U. (2004). EMILeA-stat: Statistik multimedial und interaktiv. Softwaretechnik-Trends, 24 (1), 46-53
Cramer, K., Kamps, U. & Zuckschwerdt, C. (2004). st·apps and EMILeA-stat: Interactive visualizations in descriptive statistics. In: J. Antoch (Hrsg.), Proceedings in Computational Statistics (S.101-112). Heidelberg: Physica.
Pahl, C. & Kamps, U. (2005). EMILeA-stat: Multimediales und interaktives Statistiklernen in der Schule. In: P. Bender et al. (Hrsg.), Neue Medien und Bildungsstandards (S.115-121). Hildesheim: Franzbecker.
Cramer, E., Kamps, U. & Schottmüller, H. (2008). Statistik multimedial: Lehren und Lernen mit EMILeA-stat. RWTH-Themen, 2/08, 64-68
Kamps, U. & Burkschat, M. (2015). Erneuerungstheorie und Wartezeitparadoxon. wisu - das wirtschaftsstudium (3), 289-295
Hausmann, L. & Kamps, U. (2016). Darstellung und Messung von Konzentration mit Lorenzkurve und Gini-Koeffizient in einem Schüleruni-Workshop. In: Gesellschaft für Didaktik der Mathematik (Hrsg.), Beiträge zum Mathematikunterricht 2016 (S.381-384). Münster: WTM-Verlag.
Cramer, E. & Kamps, U. (2017). Modul Stochastik (1. Version, 2017) (Online Mathematik Brückenkurs (OMB+)). : https://www.ombplus.de/ombplus/public/index.html?org=rwth.
Hausmann, L. & Kamps, U. (2019). Lorenzkurve und Gini-Koeffizient - Vernetzung und Kontext. Der Mathematikunterricht (1), 42-53
Kamps, U. (2019). Zur Einführung [Vorwort zum Heft 1/2019]. Der Mathematikunterricht, 2
Tagungsbeiträge (Sortieren nach: Erscheinungsdatum | Titel)
Cramer, E., Kamps, U. & Rychlik, T. (2002). Moments of generalized order statistics. In: H. Langseth & B. Lindqvist (Hrsg.), Third International Conference on Mathematical Methods in Reliability, Methodology and Practice (S.165-168). Trondheim: NTNU.
Beutner, E, Burkschat, M & Kamps, U (2007). Sequential k-out-of-n systems: model and estimation. Proceedings of the Fifth International Mathematical Methods in Reliability (MMR) Conference (S.). Glasgow: .
Empacher, C. & Kamps, U. (2023). Prediction of record performances in sports in a record-values model (E. Bergherr, A. Groll, A. Mayr (Eds.) Proc. 37th IWSM, 430-435). Dortmund: .
Zeitschriften (Sortieren nach: Erscheinungsdatum | Titel)
Rauwolf, D. & Kamps, U. (2023). Quantifying the inspection paradox with random time. The American Statistician, 77 (3), 274-282
Kamps, U. & Cramer, E. (2007). Comments on: "Progressive censoring methodology: An appraisal" by : N. Balakrishnan. Test, 16, 271-275
Volovskiy, G. & Kamps, U. (2020). Maximum observed likelihood prediction of future record values. TEST, 29 (4), 1072–1097
Kamps, U. (1996). On a renewal process average. Stochastic Processes and Their Applications, 62, 347-349
Bedbur, S. & Kamps, U. (2019). Testing for equality of parameters from different load-sharing systems. Stats, 2 (1), 70-88
Empacher, C., Kamps, U. & Volovskiy, G. (2023). Statistical prediction of future sports records based on record values. Stats, 6, 131–147
Rauwolf, D. & Kamps, U. (2024). On non-occurrence of the inspection paradox. Stats, 7 (2), 389–401
Bedbur, S., Lennartz, J.M. & Kamps, U. (2020). On minimum volume properties of some confidence regions for multiple multivariate normal means. Statistics and Probability Letters, 158, 108676:1-4
Kamps, U. & Rauwolf, D. (2023). A record-values property of a renewal process with random inspection time. Statistics and Probability Letters, 195, 109785
Bedbur, S. & Kamps, U. (2023). Uniformly most powerful unbiased tests for the dispersion parameter of the Conway-Maxwell-Poisson distribution. Statistics and Probability Letters, 196, 109801
Cramer, E., Kamps, U. & Schenk, N. (2002). On the joint completeness of independent statistics. Statistics and Decisions, 20, 269-277
Burkschat, M., Kamps, U. & Kateri, M. (2013). Estimating scale parameters under an order statistics prior. Statistics & Risk Modeling, 30, 205-219
Balakrishnan, N., Cramer, E. & Kamps, U. (2001). Bounds for means and variances of progressive type II censored order statistics. Statistics & Probability Letters, 54, 301-315
Cramer, E., Kamps, U. & Rychlik, T. (2002). On the existence of moments of generalized order statistics. Statistics & Probability Letters, 59, 397-404
Burkschat, M., Cramer, E. & Kamps, U. (2006). On optimal schemes in progressive censoring. Statistics & Probability Letters, 76, 1032-1036
Beutner, E. & Kamps, U. (2007). Random convex combinations of order statistics. Statistics & Probability Letters, 77, 1133-1136
Balakrishnan, N., Kamps, U. & Kateri, M. (2009). Minimal repair under a step-stress test. Statistics & Probability Letters, 79, 1548-1558
Bedbur, S. & Kamps, U. (2019). Confidence regions in step-stress experiments with multiple samples under repeated type-II censoring. Statistics & Probability Letters, 146, 181-186
Bedbur, S., Kamps, U. & Lennartz, J.M. (2019). On a smallest confidence region for a location-scale parameter in progressively type-II censored lifetime experiments. Statistics & Probability Letters, 154, 108545:1-4
Kamps, U. & Cramer, E. (2001). On distributions of generalized order statistics. Statistics, 35, 269-280
Balakrishnan, N., Cramer, E., Kamps, U. & Schenk, N. (2001). Progressive type II censored order statistics from exponential distributions. Statistics, 35, 537-556
Balakrishnan, N., Cramer, E. & Kamps, U. (2005). Relation for joint densities of progressively censored order statistics. Statistics, 39, 529-536
Bedbur, S., Beutner, E. & Kamps, U. (2012). Generalized order statistics: An exponential family in model parameters. Statistics, 46, 159-166
Fischer, T. & Kamps, U. (2014). Structure preserving mappings of uniform order statistics. Statistics, 48 (1), 142-158
Bedbur, S., Beutner, E. & Kamps, U. (2014). Multivariate testing and model-checking for generalized order statistics with applications. Statistics, 48 (6), 1297-1310
Bedbur, S., Müller, N. & Kamps, U. (2016). Hypotheses testing for generalized order statistics with simple order restrictions on model parameters under the alternative. Statistics, 50 (4), 775 - 790
Bedbur, S. & Kamps, U. (2017). Inference in a two-parameter generalized order statistics model. Statistics, 51 (5), 1132-1142
Volovskiy, G. & Kamps, U. (2020). Optimal equivariant prediction regions based on multiply type-II censored generalized order statistics from exponential distributions. Statistics, 54 (5), 951-968
Schmidt, J.P. & Kamps, U. (2020). Almost sure limit behaviour of Pfeifer record values. Statistics, 54 (4), 830-840
Kamps, U. (1989). Hellinger distances and α-entropy in a one-parameter class of density functions. Statistical Papers, 30, 263 - 269
Kamps, U. (1990). Characterizations of the exponential distribution by weighted sums of iid random variables. Statistical Papers, 31, 233 - 237
Herff, W., Jochems, B. & Kamps, U. (1997). The inspection paradox with random time. Statistical Papers, 38, 103-110
Kateri, M. & Kamps, U. (2015). Inference in step-stress models based on failure rates. Statistical Papers, 56 (3), 639-660
Lennartz, J.M., Bedbur, S. & Kamps, U. (2021). Minimum area confidence regions and their coverage probabilities for type-II censored exponential data. Statistical Papers, 62 (1), 171-191
Katzur, A. & Kamps, U. (2016). Homogeneity testing via weighted affinity in multiparameter exponential families. Statistical Methodology, 32, 77–90
Kateri, M., Kamps, U. & Balakrishnan, N. (2010). Multi-sample simple step-stress experiment under time constraints. Statistica Neerlandica, 64, 77–96
Kamps, U. (1998). On a class of premium principles including the Esscher principle. Scandinavian Actuarial Journal, 75-80
Keseling, C. & Kamps, U. (2003). A theorem of Rossberg for generalized order statistics. Sankhya, 65, 259-270
Cramer, E. & Kamps, U. (2008). VDI-Richtlinie 4008,9 - Eine Modellerweiterung [Analyse der Zuverlässigkeit redundanter Systeme]. RWTH-Themen, 2/08, 20-25
Volovskiy, G. & Kamps, U. (2023). Likelihood-based prediction of future Weibull record values. REVSTAT, 21 (3), 425-445
Volovskiy, G., Bedbur, S. & Kamps, U. (2021). Link functions for parameters of sequential order statistics and curved exponential families. Probability and Mathematical Statistics, 41 (1), 115-127
Kamps, U. (1992). Identities for the difference of moments of successive order statistics and record values. Metron, 50, 179 - 187
Kamps, U. (1996). A characterization of uniform distributions by subranges and its extension to generalized order statistics. Metron, 54, 37-44
Burkschat, M., Cramer, E. & Kamps, U. (2003). Dual generalized order statistics. Metron, 61, 13-26
Kamps, U. (1991). A general recurrence relation for moments of order statistics in a class of probability distributions and characterizations. Metrika, 38, 215 - 225
Kamps, U. & Mattner, L. (1993). An identity for expectations of functions of order statistics. Metrika, 40, 361 - 365
Cramer, E. & Kamps, U. (1997). The UMVUE of P(X<Y) based on type-II censored samples from Weinman multivariate exponential distributions. Metrika, 46, 93-121
Cramer, E. & Kamps, U. (2003). Marginal distributions of sequential and generalized order statistics. Metrika, 58, 293-310
Johnen, M., Bedbur, S. & Kamps, U. (2020). A note on multiple roots of a likelihood equation for Weibull sequential order statistics. Metrika, 83 (4), 519-525
Volovskiy, G. & Kamps, U. (2020). Maximum product of spacings prediction of future record values. Metrika, 83 (7), 853-868
Empacher, C. & Kamps, U. (2025). Simultaneous prediction of record values. Metrika, to appear
Bedbur, S., Imm, A. & Kamps, U. (2024). Characterizing the existence and location of the ML estimate in the Conway-Maxwell-Poisson model. Mathematical Methods of Statistics, 33 (1), 70–78
Alimohammadi, M., Kamps, U., Azizi, F. & Pourbagher, M. (2025). A distributional identity for generalized order statistics with characterizations useful for prediction. Mathematical Methods in Statistics, to appear
Kamps, U. (1989). Chebyshev polynomials and least squares estimation based on one-dependent random variables. Linear Algebra and its Applications, 112, 217 - 230
Kamps, U. (1990). Relative efficiency of estimates and the use of Chebyshev polynomials in a model of pairwise overlapping samples. Linear Algebra and its Applications, 127, 641 - 653
Bedbur, S., Lennartz, J.M. & Kamps, U. (2013). Confidence regions in models of ordered data. Journal of Statistical Theory and Practice, 7, 59-72
Lennartz, J.M., Bedbur, S. & Kamps, U. (2020). Minimum volume confidence regions for parameters of exponential distributions from different samples. Journal of Statistical Theory and Practice, 14 (2), 27:1-13
Schmiedt, A.B., Empacher, C. & Kamps, U. (2025). One- and two-sided prediction intervals for future Pareto record values with applications. Journal of Statistical Theory and Applications, to appear
Kamps, U. (1991). Inequalities for moments of order statistics and characterizations of distributions. Journal of Statistical Planning and Inference, 27, 397 - 404
Kamps, U. (1995). Recurrence relations for moments of record values. Journal of Statistical Planning and Inference, 45, 225-234
Kamps, U. (1995). A concept of generalized order statistics. Journal of Statistical Planning and Inference, 48, 1-23
Cobbers, H. & Kamps, U. (1998). A note on characterizations of the geometric distribution. Journal of Statistical Planning and Inference, 67, 187-190
Cramer, E. & Kamps, U. (2000). Relations for expectations of functions of generalized order statistics. Journal of Statistical Planning and Inference, 89, 79-89
Beutner, E. & Kamps, U. (2009). Order restricted statistical inference for scale parameters based on sequential order statistics. Journal of Statistical Planning and Inference, 139, 2963-2969
Kateri, M., Kamps, U. & Balakrishnan, N. (2009). A meta-analysis approach for step-stress experiments. Journal of Statistical Planning and Inference, 139, 2907-2919
Fischer, T. & Kamps, U. (2011). On the existence of transformations preserving the structure of order statistics in lower dimensions. Journal of Statistical Planning and Inference, 141, 536-548
Schenk, N., Burkschat, M., Cramer, E. & Kamps, U. (2011). Bayesian estimation and prediction with multiply Type-II censored samples of sequential order statistics from one- and two-parameter exponential distributions. Journal of Statistical Planning and Inference, 141, 1575-1587
Goroncy, A. & Kamps, U. (2012). Relations for m-generalized order statistics via an Opial-type inequality. Journal of Statistical Planning and Inference, 142, 1457–1463
Balakrishnan, N., Beutner, E. & Kamps, U. (2008). Order restricted inference for sequential k-out-of-n systems. Journal of Multivariate Analysis, 99, 1489-1502
Burkschat, M., Kamps, U. & Kateri, M. (2010). Sequential order statistics with an order statistics prior. Journal of Multivariate Analysis, 101, 1826-1836
Vuong, Q.N., Bedbur, S. & Kamps, U. (2013). Distances between models of generalized order statistics. Journal of Multivariate Analysis, 118, 24-36
Katzur, A. & Kamps, U. (2016). Classification into Kullback-Leibler balls in exponential families. Journal of Multivariate Analysis, 150, 75–90
Bedbur, S., Johnen, M. & Kamps, U. (2019). Inference from multiple samples of Weibull sequential order statistics. Journal of Multivariate Analysis, 169 , 381-399
Johnen, M., Pitzen, S., Kamps, U., Kateri, M., Dechent, P. & Sauer, D.U. (2021). Modeling long-term capacity degradation of lithium-ion batteries. Journal of Energy Storage, 34, 102011:1-10
Schmiedt, A.B., Dickert, H.H., Bleck, W. & Kamps, U. (2014). Multivariate extreme value analysis and its relevance in a metallographical application. Journal of Applied Statistics, 41 (3), 582-595
Katzur, A. & Kamps, U. (2016). Order statistics with memory: A model with reliability applications. Journal of Applied Probability, 53 (4), 974-988
Balakrishnan, N., Beutner, E. & Kamps, U. (2011). Modeling parameters of a load-sharing system through link functions in sequential order statistics models and associated inference. IEEE Transactions on Reliability, 60, 605-611
Seiche, T. & Kamps, U. (2021). Validation of a link-function assumption in type-II censored constant stress experiments. IEEE Transactions on Reliability, 70 (2), 525-534
Kamps, U. (1998). Subranges of generalized order statistics from exponential distributions. Fasciculi Mathematici, 28, 63-70
Empacher, C., Kamps, U. & Schmiedt, A.B. (2025). Prediction intervals for future Pareto record claims. European Actuarial Journal, 15, 163–197
Bedbur, S. & Kamps, U. (2021). On representations of divergence measures and related quantities in exponential families. Entropy, 23 (6), 726:1-14
Clermont, S., Herff, W., Jochems, B. & Kamps, U. (1996). The adjusted average time to signal of control charts with variable sampling intervals. Economic Quality Control, 11, 83-96
Cramer, E. & Kamps, U. (1998). Sequential k-out-of-n systems with Weibull components. Economic Quality Control, 13, 227-239
Johnen, M., Schmitz, C., Kateri, M. & Kamps, U. (2020). Fitting lifetime distributions to interval censored cyclic-aging data of lithium-ion batteries. Computers & Industrial Engineering, 143, 106418:1-11
Kateri, M., Kamps, U. & Balakrishnan, N. (2011). Optimal allocation of change points in simple step-stress experiments under type-II censoring. Computational Statistics and Data Analysis, 55, 236-247
Fischer, T. & Kamps, U. (2013). Power maps in goodness-of-fit testing. Computational Statistics, 28, 1365-1382
Beutner, E. & Kamps, U. (2008). Random contraction and random dilation of generalized order statistics. Communications in Statistics – Theory and Methods, 2185-2201
Bedbur, S., Kamps, U. & Marner, M. (2020). Rényi entropy of m-generalized order statistics. Communications in Statistics – Theory and Methods, 49 (14), 3397-3406
Buono, F., Kamps, U. & Kateri, M. (2024). Cumulative entropies and sums of moments of order statistics. Communications in Statistics – Theory and Methods, to appear. Verfügbar unter http://doi.org/10.1080/03610926.2024.2391435
Kamps, U. (1988). Distance measures in a one-parameter class of density functions. Communications in Statistics - Theory and Methods, 17, 2013 - 2019
Kamps, U. (1994). Reliability properties of record values from non-identically distributed random variables. Communications in Statistics - Theory and Methods, 23, 2101 - 2112
Cramer, E. & Kamps, U. (1997). A note on the UMVUE of Pr(X<Y) in the exponential case. Communications in Statistics - Theory and Methods, 26, 1051-1055
Cramer, E., Kamps, U. & Keseling, C. (2004). Characterizations via linear regression of ordered random variables: A unifying approach. Communications in Statistics - Theory and Methods, 33, 2885-2911
Burkschat, M., Cramer, E. & Kamps, U. (2007). Optimality criteria and optimal schemes in progressive censoring. Communications in Statistics - Theory and Methods, 36, 1419-1431
Beutner, E. & Kamps, U. (2009). Identical distributions of single variates and random convex combinations of uniform fractional order statistics. Communications in Statistics - Theory and Methods, 38, 1950-1959
Goroncy, A. & Kamps, U. (2013). Random convex combinations of m-generalized order statistics. Communications in Statistics - Theory and Methods, 42, 2376-2384
Bedbur, S., Kamps, U. & Lennartz, J.M. (2019). Confidence regions for Pareto parameters from a single and independent samples. Communications in Statistics - Theory and Methods, 48 (13), 3341-3359
Volovskiy, G. & Kamps, U. (2023). Comparison of likelihood-based predictors of future Pareto and Lomax record values in terms of Pitman closeness. Communications in Statistics - Theory and Methods, 52 (6), 1905-1922
Kamps, U. & Weingarten, H. (1989). Maximum likelihood estimation of a Poisson parameter in a model of equioverlapping samples: A simulation study. Communications in Statistics - Simulation and Computation, 18, 1369 - 1379
Fischer, T. & Kamps, U. (2015). Power maps in goodness-of-fit testing based on censored samples. Communications in Statistics - Simulation and Computation, 44 (7), 1931-1974
Kamps, U. (1989). Estimation based on equioverlapping samples. Biometrika, 76, 799 - 802
Schmitz, C., Kamps, U. & Kateri, M. (2024). A longitudinal degradation set-up for calendar aging of lithium-ion batteries in view of sparse experimental data. Applied Stochastic Models in Business and Industry, 40 (3), 710-724
Bedbur, S., Kamps, U. & Kateri, M. (2015). Meta-analysis of general step-stress experiments under repeated Type-II censoring. Applied Mathematical Modelling, 39, 2261-2275
Kamps, U. & Gather, U. (1997). Characteristic properties of generalized order statistics from exponential distributions. Applicationes Mathematicae, 24, 383-391
Cramer, E., Kamps, U. & Rychlik, T. (2002). Evaluations of expected generalized order statistics in various scale units. Applicationes Mathematicae, 29, 285-295
Cramer, E., Kamps, U. & Raqab, M. (2003). Characterizations of exponential distributions by spacings of generalized order statistics. Applicationes Mathematicae, 30, 257-265
Kateri, M. & Kamps, U. (2017). Hazard rate modeling of step-stress experiments. Annual Review of Statistics and Its Application, 4, 147–168
Cramer, E. & Kamps, U. (1996). Sequential order statistics and k-out-of-n systems with sequentially adjusted failure rates. Annals of the Institute of Statistical Mathematics, 48, 535-549
Cramer, E. & Kamps, U. (2001). Estimation with sequential order statistics from exponential distributions. Annals of the Institute of Statistical Mathematics, 53, 307-324
Cramer, E., Kamps, U. & Rychlik, T. (2004). Unimodality of uniform generalized order statistics, with applications to mean bounds. Annals of the Institute of Statistical Mathematics, 56, 183-192
Balakrishnan, N., Kamps, U. & Kateri, M. (2012). A sequential order statistics approach to step-stress testing. Annals of the Institute of Statistical Mathematics, 64, 303-318
Bedbur, S., Burkschat, M. & Kamps, U. (2016). Inference in a model of successive failures with shape-adjusted hazard rates. Annals of the Institute of Statistical Mathematics, 68 (3), 639-657
Kamps, U. (1989). Überlappende Stichproben aus einer endlichen Grundgesamtheit. Allgemeines Statistisches Archiv, 73, 143 - 166
Kamps, U. (1992). Characterizations of the exponential distribution by equality of moments. Allgemeines Statistisches Archiv, 76, 122 - 127
Katzur, A. & Kamps, U. (2020). Classification Using Sequential Order Statistics. Advances in Data Analysis and Classification, 14 (1), 201-230
Schmiedt, A.B., H.H. Dickert, H.H., Bleck, W. & Kamps, U. (2015). Evaluation of maximum non-metallic inclusion sizes in engineering steels by fitting a generalized extreme value distribution based on vectors of largest observations. Acta Materialia, 95, 1-9
Bedbur, S., Kamps, U. & Imm, A. (2023). On the existence of maximum likelihood estimates for the parameters of the Conway-Maxwell-Poisson distribution. ALEA - Latin American Journal of Probability and Mathematical Statistics, 20, 561–575